
f -GANs Settle Scores!

Siddarth Asokan
Robert Bosch Center for Cyber-Physical Systems

Indian Institute of Science
Bengaluru - 560012, India
siddartha@iisc.ac.in

Nishanth Shetty
Department of Electrical Engineering

Indian Institute of Science
Bengaluru - 560012, India
nishanths@iisc.ac.in

Aadithya Srikanth
Department of Electrical Engineering

Indian Institute of Science
Bengaluru - 560012, India

srikanth.aadithya@gmail.com

Chandra Sekhar Seelamantula
Department of Electrical Engineering

Indian Institute of Science
Bengaluru - 560012, India

css@iisc.ac.in

Abstract

Generative adversarial networks (GANs) comprise a generator, trained to learn
the underlying distribution of the desired data, and a discriminator, trained to
distinguish real samples from those output by the generator. A majority of GAN
literature focuses on understanding the optimality of the discriminator, typically
under divergence minimization losses. In this paper, we propose a unified approach
to analyzing the generator optimization through variational Calculus, uncovering
links to score-based diffusion models. Considering f -divergence-minimizing
GANs, we show that the optimal generator is the one that matches the score of its
output distribution with that of the data distribution. The proposed approach serves
to unify score-based training and existing f -GAN flavors by leveraging results from
normalizing flows, while also providing explanations for empirical phenomena such
as the stability of non-saturating GAN losses, or the state-of-the-art performance
of discriminator guidance in diffusion models.

1 Introduction

Generative modeling refers to the process of learning the underlying distribution of a given dataset,
either with the aim of evaluating the density, or generating new unseen samples from the underlying
distribution. Generative adversarial networks (GANs, Goodfellow et al. (2014)) have become one
of the most popular frameworks for image generation, owing to lower sampling times and state-of-
the-art sample quality (Karras et al., 2020, 2021; Sauer et al., 2022). GANs are a two-player game
between a generator network G : Rd → Rn and a discriminator network D : Rn → R. In most
GAN settings, d ≤ n. The generator accepts a noise vector z ∼ pz; z ∈ Rd, typically Gaussian or
uniform distributed, and transforms it into a fake sample G(z), with the push-forward distribution
pg = G#(pz). The discriminator accepts an input drawn either from the target distribution, x ∼
pd; x ∈ Rn, or from the output of a generator, and learns a real versus fake classifier. The objective
is to learn the optimal generator — one that can generate realistic samples.

GANs Losses: Divergence-minimizing GANs consider a discriminator to is trained to approximate
a chosen divergence measure between pd and pg. The generator, on the other hand, minimizes this
divergence modeled by the discriminator. For example, the standard GAN (SGAN, Goodfellow
et al. (2014)) considers the Jensen-Shannon divergence, while the least-squares GAN (LSGAN, Mao
et al. (2017)) models Pearson-χ2 divergence. Nowozin et al. (2016) generalized the formulation to
account for any f -divergence, while Uehara et al. (2016) consider extension to Bregman divergences

Neural Information Processing Systems (NeurIPS) 2023 Workshop on Diffusion Models.

as well. Owing to the training instability of divergence-minimizing GANs on non-overlapping
distributions, Arjovsky & Bottou (2017) proposed integral probability metrics (IPM) as a viable
alternative. In popular IPM-GANs, such as the Wasserstein GAN (WGAN) Arjovsky et al. (2017),
Sobolev GAN Mroueh et al. (2018), or Banach WGAN Adler & Lunz (2018), the discriminator
performs the role of a critic, and approximates the IPM.

Score Matching: Score matching was originally proposed by Hyvärinen (2005) in the context of
independent component analysis. Consider the underlying distribution of the data to be modeled,
pd(x). The (Stein) score (Liu et al., 2016) is the gradient of logarithm of the density function
with respect to the data itself, ∇x ln (pd(x)). It generates a vector field that points in the direction
where the data density grows most steeply. In score matching, the score can be approximated by
a parametric function SDφ (x) obtained by minimizing the Fisher divergence (Cover & Thomas,

2006) F (SDφ , pd) = 1
2 Ex∼pd

[
‖SDφ (x)−∇x ln (pd(x)) ‖22

]
. The output of the trained network is

used to generate samples through annealed Langevin dynamics in noise-conditioned score networks
(NCSN) (Song & Ermon, 2019). Song et al. (2021b) showed that solving the reverse-time stochastic
differential equation (SDE) in diffusion models yields a score-based generative framework, unifying
the two domains. Recent approaches aim at either improving the approximation quality of the score
network (Song et al., 2020; Ho et al., 2020; Song & Ermon, 2020; Gong & Li, 2021), or improving
the discretization of the underlying SDEs (Jolicoeur-Martineau et al., 2021; Karras et al., 2022).

Optimality in GANs: A major research focus in GAN optimization is on the optimality of the
discriminator function. While Goodfellow et al. (2014) and Mao et al. (2017) considered a pointwise
optimization of the discriminator, Mroueh et al. (2018); Yi et al. (2023) and Asokan & Seelamantula
(2023) consider a functional approach, and derived differential equations that govern the optimal
discriminator, given the generator. Along another vertical, Pinetz et al. (2018), Stanczuk et al. (2021)
and Korotin et al. (2022) showed that, in practical gradient-descent-based training, the optimal
discriminator is not attained. However, a similar in-depth analysis of the optimal generator in GANs
is lacking. Existing approaches rely on an empirical evaluation of the generator (Zhu et al., 2020),
analyze the convergence considering infinite-width network (infinite number of nodes per layer)
approximations (Franceschi et al., 2022), or derive constraints on the generator when the generator
and discriminator are jointly optimized (Liang, 2021). While in most scenarios, the generator can
be linked to minimizing the chosen divergence or IPM, the actual functional optimization has not
been thoroughly explored. What does the closed-form optimization of the generator lead to in
f -GANs? In this paper, this is the gap in literature that we seek to answer.

1.1 Our Contribution

We consider the alternating optimization in various divergence-minimizing and IPM-based GAN
formulations, retaining the functional form of the optimal discriminator, and analyze the generator
loss function through the lens of variational calculus. Considering the family of f -GANs, we
show that minimizing the f -divergence results in an optimal generator which, given the optimal
discriminator, minimizes the error between the score (the gradient of the log-probability) of the target
data distribution, and the score of the generator’s push-forward distribution. This permits interpreting
the f -GANs as performing score-matching. Owing to the score-matching link, our approach is
entitled ScoreGAN. As a proof of concept, we validate training ScoreGANs on synthetic Gaussian
data. The closest approach to ours is that of Franceschi et al. (2023), who derive similar results in the
context of generalizing diffusion models as interacting particle flows.

2 Divergence Minimizing GANs

Nowozin et al. (2016) proposed f -GANs, considering f -divergences of the form: Df (pd‖ pt−1) =∫
X f (rt−1(x)) pd(x) dx, where f : R+ → R is a convex, lower-semicontinuous function over

the support X and satisfies f(1) = 0 and rt−1(x) is the density ratio rt−1(x) = pd(x)
pt−1(x)

. The
optimization is given by minG

{
maxD

{
Ex∼pd [T (x)]− Ex∼pg [f c(T (G(z))]

}}
, where T (x) =

g(D(x)), is the output of the discriminator subjected to activation g, and D∗(x) is the optimal
discriminator. In practice, the optimization is an alternating one, wherein the discriminator Dt is
derived given the generator of the previous iteration, Gt−1, and the subsequent generator optimization
involves computing Gt, given Dt and Gt−1. For simplicity, we denote the push-forward distribution

2

at iteration t as pt(x) = Gt,#(pz(z)). Within this formulation, the generator optimization becomes:

LfG(G;D∗t , Gt−1) = E
x∼pd

[g(D∗t (x))]− E
x∼pt−1

[f c(g(D∗(x)))] , (1)

where f c denotes the Fenchel conjugate of f .

Assume that the generator has not converged, i.e., pt−1(x) 6= pd(x), and that the distribution pd and
pt−1 have overlapping support. Then, the following theorem gives us the optimality condition for
generator (G∗t), given D∗t , such that pt(x) = G∗t,#(pz) = pd(x) for f -GANs.
Theorem 2.1. Consider the generator loss in f -GANs, given by Equation (1). The optimal f -GAN
generator satisfies the following score-matching condition:

rt−1(x)g′(t)
∣∣
t=D∗

t
D∗′t (y)

∣∣
y=ln(rt−1)︸ ︷︷ ︸

C (x; pd, pt−1)

∇x (ln rt−1(x)) = 0, (2)

where g′(t) denotes the derivative of the activation function with respect toD evaluated atD∗t , D∗′t (y)
denotes the derivative of the optimal discriminator function with respect to y = ln(rt−1(x)), evalu-
ated at ln(rt−1(x)) (cf. Table 1, Appendix C.1) and x = G∗t (z), z ∼ pz .

The proof is discussed in Appendix C.1. For z such that C (x; pd, pt−1) 6= 0, the derived solu-
tion can further be simplified to yield the score matching condition: ∇x ln (pt−1(x))

∣∣
x=G∗

t (z)
=

∇x ln (pd(x))
∣∣
x=G∗

t (z)
. Although the result shows that all f -GAN generators are inherently score-

matching in nature, the effect of C accounts for the difference in training stability observed across
f -GAN variants. We discuss these results in Appendix C.1. For example, C is unity only for
reverse-KL (RKL) GANs, i.e., the generator goes to zero only when the scores match exactly. This is
consistent with empirical results by Nguyen et al. (2017); Shannon et al. (2020), where the relatively
stabler non-saturating GAN loss considered by Goodfellow et al. (2014) was shown to approximate
an RKL loss in practice. Interestingly, the analysis carried out by Franceschi et al. (2023), analyzing
diffusion models as interacting particle flows, gives rise to optimality conditions that are consistent
with Theorem 2.1. In a way, the derived results close the loop between GANs and diffusion models.
The general solution to both GAN generator training and interacting particle flows is score matching!

Interpreting the Optimal Generator: The optimality condition in f -GANs brings to light the under-
lying link between f -GANs and score-based models. While NCSN and its variants rely on Langevin
dynamics to model data transformations, the optimal generator in GANs can be interpreted as approx-
imating these iterations one-shot. The results derived provide an analytical equivalence between the
sampling iterations in score-based diffusion, and the training iterations of a GAN generator. GAN
training transforms the generator distribution in the score-matching sense, akin to the iterations in
Langevin sampling. Given the link to score-matching, the f -GAN discriminator gradient can be
viewed as serving the role of a proxy for the score (cf. Appendix D). This validates the empirical
success of discriminator guidance in state-of-the-art diffusion models (Kim et al., 2023).

Practical Considerations: In practice, as the score is undefined when either pd(x) or pt−1(x) are
zero, the optimality condition cannot be met pointwise, but must be approximated. We therefore
consider a least-squares cost. Given a neural network generator Gθt , where θt denotes the network
parameters at time t, this gives rise to the Fisher divergence between the scores:

LSc
G (θ)= E

z∼pz

[
‖∇xln(pt−1(x))−∇xln(pd(x))‖22

∣∣
x=Gθt (z)

]
,

where θ∗ = arg minθ LSG(θ). Owing to the score-based approach to training the generator, the
proposed approach is called ScoreGAN. The above loss involves computing two key terms: (i) The
score of the target data; and (ii) The score of the generator distribution. For parametric distributions
such as Gaussians, the score of the data can be computed by means of automatic differentiation (Abadi
et al., 2016; Paszke et al., 2019). In the case of image data, a pre-trained score network SDφ can be
used to approximate the score of the data (Song & Ermon, 2020; Song et al., 2021a; Rombach et al.,
2022). To compute the score of the generator, when the dimensionality of the data is relatively small,
say O(103), the change of variables formula can be used, yielding the following result:
Lemma 2.2. Consider the push-forward generator distribution pt(x) = Gθt,#(pz), where pz =
N (z;µz,Σz) and Gθt:Rn → Rn. Then, the generator score is given by:

∇xln pt(x)
∣∣
x=Gθt (z)

=−J−TGθt

(
∇z ln|det JGθt (z)|+ z

)
,

where JGθt denotes the Jacobian of the generator Gθt .

3

250 500 750 1000

ITERATIONS

0

5

10

15

20

25

W
2
,2
(p

d
,
p g
)

500 1000 1500

ITERATIONS

0

2

4

6

8

10

12

14

W
2
,2
(p

d
,
p g
)

500 1000 1500

ITERATIONS

0

20

40

60

80

100

120

W
2
,2
(p

d
,
p g
)

200 400 600 800 1000

0

5

10

15

20

25

SGAN

LSGAN

LS-DRAGAN

WGAN-GP

WGAN-Rd

GMMN (RBFG)

GMMN (IMQ)

ScoreGAN

(a) (b) (c)

Figure 1: (Color online) Comparisons between ScoreGAN and the baselines in terms of the
Wasserstein-2 distanceW2,2(pd, pg) on learning (a) a 2-D; (b) a 16-D; and (c) a 128-D Gaussian.
ScoreGAN converge an order of magnitude faster than the baseline GANs on 2-D Gaussians. As the
data dimensionality increases, ScoreGAN continue to outpace the baselines.

The proof is discussed in Appendix C.4. Generalizations considering G : Rd → Rn; d � n are
discussed in Appendix C.5. In very high dimensions, the Jacobian computations are inefficient,
and one could consider training a second score network, SGψ , to approximate the score of the
generator, trained jointly with the generator in a non-adversarial fashion. As part of this workshop
submission, we present experiments on Gaussian data, deferring the analysis of the alternatives to
future extensions.

3 Experimental Validation

To validate the observations made in Sections 2, we consider synthetic experiments on learning Gaus-
sians. While these experiments are not targeted towards outperforming state-of-the-art GANs (Sauer
et al., 2022; Kang et al., 2023), they serve to illuminate the training dynamics present in GAN variants,
and their links to modeling the score. As baselines, we consider SGAN (Goodfellow et al., 2014),
LSGAN (Mao et al., 2017) and WGAN-GP (Gulrajani et al., 2017), gradient-regularized variants
such as LS-DRAGAN (Kodali et al., 2017), WGAN-Rd (Mescheder et al., 2018), and kernel-based
generative moment matching networks (GMMNs) with the inverse multi-quadric (IMQ) and Gaussian
(RBFG) kernels (Li et al., 2015). We present results on learning 2-, 16-, and 128-dimensional univari-
ate Gaussians. The generator is a linear transformation x = Az + b. Additional network details are
given in Appendix D. From Figure 1, we observe that in all three scenarios, GMMNs converges faster
than the baseline GANs owing to the lack of adversarial training. On low-dimensional 2-D Gaussian
learning, ScoreGAN converges the fastest. As the dimensionality increases, the convergence SGAN
and GMMN (RBFG) fail to converge on 128-D data, owing to vanishing gradients. To showcase the
instability of f -divergence based GANs when pt−1 and pd possess non-overlapping supports, we
present results on learning Gaussian mixture data. Similar empirical observations were made when
training SGAN on the Dirac measure (Arjovsky & Bottou, 2017). We consider the two-component
Gaussian mixture pd(x) = 1

5N (−51, I) + 4
5N (51, I). Figures comparing the generator and data

distributions are provided in Appendix D.1. The results indicate that, while the IPM-based GANs
converge accurately to the desired target distribution, SGAN misses the less-represented mode located
at µ = −51. This can be explained through Theorem 2.1 – When the generated samples are far from
the data, pd(Gθt(z))→ 0, leading to small gradients induced by the rapidly decaying score.

4 Discussions and Conclusion

In this paper, we proposed a novel approach to analyzing the optimal generator in divergence-
minimizing through the perspective of variational Calculus. While our analysis covers most popular
f -GAN flavors, the analysis can be extended to other closely-related GAN loss function (cf. Ap-
pendix C.3). Theorem 2.1 show that in all f -GANs, the generator is a score-matching network. These
results deepen our understanding of the optimality in GANs. For examples, the score loss in f -GANs
help explain their poor performance on non-overlapping distributions. These insights, together with
diffusion-based formulations derived by (Franceschi et al., 2023) provide a framework for deriving
equivalent diffusion models, given a GAN, and vice versa. Training a second score network, SGψ ,
to approximate the score of the generator, or analyzing IPM-GAN costs within this framework, are
promising directions for future research.

4

Acknowledgements

Siddarth Asokan is supported by the Microsoft Research Ph.D. Fellowship, the Qualcomm Innovation
Fellowship 2023, and the Robert Bosch Center for Cyber-Physical Systems Ph.D. Fellowship.
Nishanth Shetty is supported by the Prime Minister’s Research Fellowship and the Qualcomm
Innovation Fellowship 2023.

References
Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems.

arXiv preprint, arXiv:1603.04467, Mar. 2016. URL https://arxiv.org/abs/1603.04467.

Adler, J. and Lunz, S. Banach Wasserstein GAN. In Advances in Neural Information Processing
Systems 31, pp. 6754–6763. 2018.

Ansari, A. F., Ang, M. L., and Soh, H. Refining deep generative models via discriminator gradient flow.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=Zbc-ue9p_rE.

Arbel, M., Korba, A., Salim, A., and Gretton, A. Maximum mean discrepancy gradient flow. In
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Arjovsky, M. and Bottou, L. Towards principled methods for training generative adversarial networks.
arXiv preprints, arXiv:1701.04862, 2017. URL https://arxiv.org/abs/1701.04862.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein generative adversarial networks. In Proceed-
ings of the 34th International Conference on Machine Learning, pp. 214–223, 2017.

Asokan, S. and Seelamantula, C. S. Euler-Lagrange analysis of generative adversarial networks.
Journal of Machine Learning Research (JMLR), pp. 1–100, 2023.

Cover, T. and Thomas, J. Elements of Information Theory. Wiley-Interscience, 2006.

Dinh, L., Krueger, D., and Bengio, Y. NICE: non-linear independent components estimation. In 3rd
International Conference on Learning Representations, Workshop Track Proceedings, 2015. URL
http://arxiv.org/abs/1410.8516.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estimation using real NVP. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=
HkpbnH9lx.

Ferguson, J. A brief survey of the history of the calculus of variations and its applications. arXiv
preprint, arXiv:math/0402357, Feb. 2004. URL https://arxiv.org/abs/math/0402357.

Franceschi, J.-Y., De Bézenac, E., Ayed, I., Chen, M., Lamprier, S., and Gallinari, P. A neural tangent
kernel perspective of GANs. In Proceedings of the 39th International Conference on Machine
Learning, Jul 2022.

Franceschi, J.-Y., Gartrell, M., Santos, L. D., Issenhuth, T., de Bzenac, E., Chen, M., and Rakotoma-
monjy, A. Unifying gans and score-based diffusion as generative particle models. arXiv preprint,
arXiv:2305.16150, abs/2305.16150, 2023. URL https://arxiv.org/abs/2305.16150.

Gel’fand, I. M. and Fomin, S. V. Calculus of Variations. Prentice-Hall, 1964.

Glaser, P., Arbel, M., and Gretton, A. KALE flow: A relaxed KL gradient flow for probabilities with
disjoint support. In Advances in Neural Information Processing Systems, volume 34, 2021.

Goldstine, H. H. A History of the Calculus of Variations from the 17th Through the 19th Century.
Springer, New York, 1980.

Gong, W. and Li, Y. Interpreting diffusion score matching using normalizing flow. In ICML Workshop
on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 2021. URL
https://openreview.net/forum?id=jxsmOXCDv9l.

5

https://arxiv.org/abs/1603.04467
https://openreview.net/forum?id=Zbc-ue9p_rE
https://openreview.net/forum?id=Zbc-ue9p_rE
https://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1410.8516
https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx
https://arxiv.org/abs/math/0402357
https://arxiv.org/abs/2305.16150
https://openreview.net/forum?id=jxsmOXCDv9l

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. C.,
and Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems
27, pp. 2672–2680. 2014.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. Improved training of
Wasserstein GANs. In Advances in Neural Information Processing Systems 30, pp. 5767–5777.
2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. arXiv preprint,
arXiv:2006.11239, 2020. URL https://arxiv.org/abs/2006.11239.

Hyvärinen, A. Estimation of non-normalized statistical models by score matching. Journal
of Machine Learning Research, 6(24):695–709, 2005. URL http://jmlr.org/papers/v6/
hyvarinen05a.html.

Jolicoeur-Martineau, A., Li, K., Piché-Taillefer, R., Kachman, T., and Mitliagkas, I. Gotta go fast
with score-based generative models. In The NeurIPS DLDE-I Workshop, 2021. URL https:
//openreview.net/forum?id=gEoVDSASC2h.

Jordan, R., Kinderlehrer, D., and Otto, F. The variational formulation of the Fokker–Planck equation.
SIAM journal on mathematical analysis, 29(1):1–17, 1998.

Kang, M., Zhu, J.-Y., Zhang, R., Park, J., Shechtman, E., Paris, S., and Park, T. Scaling up GANs for
text-to-image synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., and Aila, T. Training generative adversarial
networks with limited data. In Advances in Neural Information Processing Systems 33, 2020.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating the design space of diffusion-based
generative models. In Advances in Neural Information Processing Systems, volume 35, 2022.

Karras, T. et al. Alias-free generative adversarial networks. In Advances in Neural Information
Processing Systems, volume 34, June 2021.

Kim, D., Kim, Y., Kwon, S. J., Kang, W., and Moon, I. Refining generative process with discriminator
guidance in score-based diffusion models. In Intl. Conf. on Machine Learning, 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd
International Conference on Learning Representations, 2015.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow with invertible 1x1 convolutions. arXiv
preprint, arXiv:1807.03039, abs/1807.03039, 2018. URL https://arxiv.org/abs/1807.
03039.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M. Improved
variational inference with inverse autoregressive flow. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, 2016.

Kodali, N., Abernethy, J. D., Hays, J., and Kira, Z. On convergence and stability of GANs. arXiv
preprint, arXiv:1705.07215, May 2017. URL http://arxiv.org/abs/1705.07215.

Korotin, A., Kolesov, A., and Burnaev, E. Kantorovich strikes back! Wasserstein GANs are not
optimal transport? In Thirty-sixth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2022.

Kwon, D., Fan, Y., and Lee, K. Score-based generative modeling secretly minimizes the Wasserstein
distance. In Advances in Neural Information Processing Systems, 2022.

Li, Y., Swersky, K., and Zemel, R. Generative moment matching networks. In Proceedings of the
32nd International Conference on Machine Learning, pp. 1718–1727, Jul 2015.

Liang, T. How well generative adversarial networks learn distributions. Journal of Machine Learning
Research, 22(228):1–41, 2021. URL http://jmlr.org/papers/v22/20-911.html.

6

https://arxiv.org/abs/2006.11239
http://jmlr.org/papers/v6/hyvarinen05a.html
http://jmlr.org/papers/v6/hyvarinen05a.html
https://openreview.net/forum?id=gEoVDSASC2h
https://openreview.net/forum?id=gEoVDSASC2h
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1807.03039
http://arxiv.org/abs/1705.07215
http://jmlr.org/papers/v22/20-911.html

Liu, Q. Stein variational gradient descent as gradient flow. In Advances in Neural Information
Processing Systems, 2017.

Liu, Q., Lee, J., and Jordan, M. A kernelized Stein discrepancy for goodness-of-fit tests. In
Proceedings of The 33rd International Conference on Machine Learning, Jun 2016.

Mao, X., Li, Q., Xie, H., Lau, R. Y. K., Wang, Z., and Smolley, S. P. Least squares generative
adversarial networks. In Proceedings of International Conference on Computer Vision, 2017.

Mescheder, L., Geiger, A., and Nowozin, S. Which training methods for GANs do actually con-
verge? In Dy, J. and Krause, A. (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 3481–3490,
Stockholmsmassan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Mroueh, Y. and Nguyen, T. On the convergence of gradient descent in GANs: MMD GAN as a
gradient flow. In Banerjee, A. and Fukumizu, K. (eds.), Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, Apr 2021.

Mroueh, Y. and Rigotti, M. Unbalanced Sobolev descent. In Advances in Neural Information
Processing Systems, volume 33, 2020.

Mroueh, Y., Li, C., Sercu, T., Raj, A., and Cheng, Y. Sobolev GAN. In Proceedings of the 6th
International Conference on Learning Representations, 2018.

Mroueh, Y., Sercu, T., and Raj, A. Sobolev descent. In Proceedings of the Twenty-Second Interna-
tional Conference on Artificial Intelligence and Statistics, Apr 2019.

Nguyen, T., Le, T., Vu, H., and Phung, D. Dual discriminator generative adversarial nets. volume 30,
2017.

Nowozin, S., Cseke, B., and Tomioka, R. f-GAN: Training generative neural samplers using
variational divergence minimization. In Advances in Neural Information Processing Systems 29,
pp. 271–279. 2016.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked autoregressive flow for density estimation.
In Advances in Neural Information Processing Systems 30. 2017.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. Normaliz-
ing flows for probabilistic modeling and inference. Journal of Machine Learning Research, 2021.
URL http://jmlr.org/papers/v22/19-1028.html.

Paszke, A. et al. PyTorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, volume 32, 2019.

Petersen, K. B., Pedersen, M. S., et al. The Matrix Cookbook. Technical University of Denmark, 7
(15):510, 2008.

Pinetz, T., Soukup, D., and Pock, T. What is optimized in Wasserstein GANs? In Proceedings of the
23rd Computer Vision Winter Workshop, 02 2018.

Rezende, D. J. and Mohamed, S. Variational inference with normalizing flows. In Proceedings of the
32nd International Conference on International Conference on Machine Learning - Volume 37, pp.
15301538, 2015.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022.

Sauer, A., Schwarz, K., and Geiger, A. StyleGAN-XL: scaling StyleGAN to large diverse datasets.
volume abs/2201.00273, 2022. URL https://arxiv.org/abs/2201.00273.

Shannon, M., Poole, B., Mariooryad, S., Bagby, T., Battenberg, E., Kao, D., Stanton, D., and
Skerry-Ryan, R. Non-saturating GAN training as divergence minimization. arXiv preprint
arXiv:2010.08029, 2020.

7

http://jmlr.org/papers/v22/19-1028.html
https://arxiv.org/abs/2201.00273

Song, J., Meng, C., and Ermon, S. Denoising diffusion implicit models. In Intl. Conf. on Learning
Representations, 2021a. URL https://openreview.net/forum?id=St1giarCHLP.

Song, Y. and Ermon, S. Generative modeling by estimating gradients of the data distribution. In
Advances in Neural Information Processing Systems, 2019.

Song, Y. and Ermon, S. Improved techniques for training score-based generative models. In Advances
in Neural Information Processing Systems 33, 2020.

Song, Y., Garg, S., Shi, J., and Ermon, S. Sliced score matching: A scalable approach to density and
score estimation. In Proceedings of The 35th Uncertainty in Artificial Intelligence Conference,
volume 115, pp. 574–584, Jul 2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. Score-based
generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021b. URL https://openreview.net/forum?id=PxTIG12RRHS.

Stanczuk, J., Etmann, C., Kreusser, L. M., and Schnlieb, C.-B. Wasserstein GANs work because they
fail (to approximate the Wasserstein distance). arXiv preprint, arXiv:2103.01678, abs/2104.11222,
2021. URL https://arxiv.org/abs/2103.01678.

Su, J. and Wu, G. f-VAEs: Improve VAEs with conditional flows. arXiv preprint, arXiv:1809.05861,
abs/1809.05861, 2018. URL https://arxiv.org/abs/1809.05861.

Uehara, M., Sato, I., Suzuki, M., Nakayama, K., and Matsuo, Y. Generative adversarial nets from
a density ratio estimation perspective. arXiv preprint, arXiv:1610.02920, abs/1610.02920, 2016.
URL https://arxiv.org/abs/1610.02920.

Yi, M., Zhu, Z., and Liu, S. Monoflow: Rethinking divergence GANs via the perspective of
differential equations. arXiv preprint, arXiv:2302.01075, abs/2302.01075, 2023. URL https:
//arxiv.org/abs/2302.01075.

Zhu, B., Jiao, J., and Tse, D. Deconstructing generative adversarial networks. IEEE Transactions on
Information Theory, 66, 2020.

8

https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://arxiv.org/abs/2103.01678
https://arxiv.org/abs/1809.05861
https://arxiv.org/abs/1610.02920
https://arxiv.org/abs/2302.01075
https://arxiv.org/abs/2302.01075

Appendix
Table of Contents

A Mathematical Preliminaries 9

B An Overview of Related Works 10

C Optimality of Divergence-minimizing GANs 10
C.1 Optimality of f -GAN (Proof of Theorem 2.1) 11
C.2 Optimality of SGAN . 13
C.3 Non-divergence-minimizing GAN Formulations 15
C.4 Computing the Score of the Generator (Proof of Lemma 2.2) 16
C.5 ScoreGANs with Rectangular Jacobian Matrices 17

D Additional Experimentation on ScoreGANs 17
D.1 Additional Experimental Results on Gaussian Learning 17
D.2 Computational Resources . 18
D.3 Source Code . 18

A Mathematical Preliminaries

Consider a vector z = [z1, z2, . . . , zn]T ∈ Rn and the generator G : Rn → Rn, i.e,., G(z) =
[G1(z), G2(z), . . . , Gn(z)]. The notation ∇zG(z) represents the gradient matrix associated with
the generator, with entries consisting of the partial derivatives of the entries of G with respect to the
entries of z:

∇zG(z) =

∂G1

∂z1
∂G2

∂z1
. . . ∂Gn

∂z1
∂G1

∂z2
∂G2

∂z2
. . . ∂Gn

∂z2

...
...

. . .
...

∂G1

∂zn
∂G2

∂zn
. . . ∂Gn

∂zn

 .
The Jacobian J can be thought of as measuring the transformation that the function imposes locally
near the point of evaluation, and is is defined to be the transpose of the gradient, i.e., ∇zG(z) =
JT
G(z).

Calculus of Variations: Our analysis centers around deriving the optimal generator in the functional
sense, leveraging the Fundamental Lemma of the Calculus of Variations (Goldstine, 1980; Ferguson,
2004). Consider an integral cost L, to be optimized over a function h:

L (h, h′) =

∫
X

F (x, h(x), h′(x)) dx , (3)

where h is assumed to be continuously differentiable or at least possess a piecewise-smooth derivative
h′(x) for all x ∈ X . If h∗(x) denotes the optimum, The first variation of L, evaluated at h∗,
is defined as the derivative δL(h∗; η) = ∂Lε(h∗)

∂ε evaluated at ε = 0, where Lε(h∗) denotes an
ε-perturbation of the argument h about the optimum h∗, given by

Lh,ε(ε) = L (h∗(x) + ε η(x), h∗′(x) + ε η′(x))

where, in turn, η(x) is a family of perturbations that are compactly supported, infinitely differentiable
functions, and vanishing on the boundary of X . Then, the optimizer of the cost L satisfies the
following first-order condition:

∂Lh,ε(ε)
∂ε

∣∣∣∣
ε=0

= 0

9

Another core concept in deriving functional optima is the Fundamental Lemma of Calculus of
Variations, which states that, if a function g(x) satisfies the condition∫

X
g(x) η(x) dx = 0

for all compactly supported, infinitely differentiable functions η(x), then g must be identically zero
almost everywhere in X . Together, these results are used to derive the condition that the optimal
generator transformation satisfies, within various GAN formulations.

B An Overview of Related Works

Links between diffusion and flows can be traced back to the work of Jordan et al. (1998), where the
Fokker-Planck equation was shown to lead to a Kullback-Leibler (KL) flow, discretized to give rise to
the Langevin Monte Carlo algorithm. However, an analysis under KL flow or Stein flow (Liu, 2017)
for GANs is infeasible, as this requires the analytical form of the target density. Recently, Gong
& Li (2021) showed that diffusion score matching can be interpreted as normalizing flows. Our
results, in a similar vein, link GAN generator optimization to both flows, and score matching. Mroueh
& Nguyen (2021) leverage MMD flow (Arbel et al., 2019) to analyze the convergence in MMD-
GANs. Recently, Kwon et al. (2022) showed that the score-matching networks in fact solve for the
Wasserstein flow between pd and pg .

The closest approaches to ours are that of MonoFlow, proposed by Yi et al. (2023), and the interact-
ing particles framework of Franceschi et al. (2023). In MonoFlow, Yi et al. (2023) showed that the
divergence-minimizing discriminator can be seen as approximating the vector field of a gradient flow
in the Wasserstein space, induced by a monotonically increasing function of the density ratio. Our
results can be seen as a generalization of those considered in MonoFlow, relating both divergence-
minimizing, and IPM-based GANs. Liang (2021) optimize IPM-based generator and discriminator
networks jointly, and show that additional regularization on the space of the generator functions
is necessary in IPM GANs to attain the optimum. Franceschi et al. (2022) propose NTK-GANs, a
unifying theory for the optimality of GANs considering neural-network discriminators, and show that
the generator in and GAN can be seen as minimizing a cost related to the NTK associated with an
infinite-width discriminator.

Normalizing Flows: Popularized by Rezende & Mohamed (2015), normalizing flows leverage the
change-of-variables formula to learn a transformation from a parametric prior distribution to a target.
The network architecture is constrained so as to facilitate easy computation of the Jacobian (Dinh et al.,
2015, 2017; Kingma & Dhariwal, 2018). Recent approaches design flows based on autoregressive
models (Kingma et al., 2016; Papamakarios et al., 2017; Su & Wu, 2018), or architectures motivated
by the Sobolev GAN loss (Mroueh et al., 2019; Mroueh & Rigotti, 2020). Glaser et al. (2021); Ansari
et al. (2021) use KL-flow to iteratively improve the noise vector input to GANs.

In the GAN context, consider the generator push-forward distribution pg = G#(pz). For the main
results of this paper, we assume G : Rn → Rn, where the generator is a diffeomorphism with a
well-defined inverse G−1, both G and its inverse being differentiable. Therefore, z ∈ Rn is no longer
the latent representation. Then, by the change-of-variables formula, we have:

pg(x) = pz(z) |det JG(z)|−1, where z = G−1(x), (4)

where in turn, JG(z) is the Jacobian of the generator. Standard mathematical notations used in this
paper, and relevant background on the Fundamental Lemma of the Calculus of Variations (Gel’fand &
Fomin, 1964) are provided in Appendix A. We now present results discussing the optimal generator
in divergence minimizing GANs.

C Optimality of Divergence-minimizing GANs

We now present the proofs for the optimality conditions derived for the divergence minimizing GANs.
We also consider an extension, pertaining to a GAN variant that does not directly correspond to the
f -divergence, the LSGAN formulation with arbitrarily chosen class labels.

10

C.1 Optimality of f -GAN (Proof of Theorem 2.1)

We now derive the optimality condition for f -GANs in general, and subsequently analyze each
variant considered by Nowozin et al. (2016) (cf. Table 1). Recall the f -GAN optimization:

LfD(D; Gt−1) = − E
x∼pd

[T (x)] + E
x∼pt−1

[f c(T (x))]

LfG(G;D∗t , Gt−1) = E
x∼pd

[T ∗(x)]− E
x∼pt−1

[f c(T ∗(x))] ,

where T (·) = g(D(·)) is the output of the discriminator D ∈ R, restricted to a desired domain by
mean of an activation function g(·), f c denotes the Fenchel conjugate of f , and T ∗(·) = g(D∗(·)).
The discriminator optimization in f -GANs has been well studied by Nowozin et al. (2016); Asokan &
Seelamantula (2023) and Yi et al. (2023). For completeness, we summarize the result here. Consider
the integral form of the discriminator cost:

LfD(D; Gt−1) =

∫
X
f c(T (x)) pt−1(x)− T (x) pd(x)︸ ︷︷ ︸

FD

dx

The integrand F can be optimized pointwise with respect to T , to derive the optimality condition for
the discriminator:

∂fc(T)

∂T

∣∣∣∣∣
T=T∗(x)

=
pd(x)

pt−1(x)
= rt−1(x), where T ∗(x) = g(D∗(x)). (5)

The above can be solved for various choices of g(·) and f c(·), giving rise to the optimal discriminator
D∗t (x) in f -GANs. For convenience, we recall the results in Table 1 of the Appendix. Since the
optimal discriminator is always a function of the logarithm of the density ratio, we denote the solution
as D∗t (ln(rt−1)).

Consider the f -GAN generator optimization, given D∗t . Only the term involving the generator
samples affects the optimization. The integral form of the loss is given by:

LfG(G) =

∫
Z
f c(T ∗(G(z))) pz(z) dz.

Let the optimal solution be denoted by

G∗t (z) = [G1∗

t (z), G2∗

t (z), . . . , Gi
∗

t (z), . . . , Gn
∗

t (z)]T,

where Gi
∗

t denotes the optimum along the ith dimension. Let LG,i,ε be the loss considering an
epsilon perturbation of the ith entry about the optimum, given by:

G∗t,i,ε(z) = [G1∗

t (z), G2∗

t (z), . . . , Gi
∗

t (z) + εη(z), . . . , Gn
∗

t (z)]T,

where η(z) is drawn from a family of compactly supported, infinitely differentiable functions. The
loss can now be written as a function of ε as:

LfG,i,ε(ε) =

∫
Z
f c(T ∗(G∗t,i,ε(z))) pz(z) dz.

Leveraging the chain rule and computing the derivative with respect to ε yields:

∂LfG,i,ε(ε)
∂ε

∣∣∣∣
ε=0

=

∫
Z

∂fc

∂T

∣∣∣∣∣
T=T∗(G∗

t,i,ε)

∂T ∗

∂D

∣∣∣∣∣
D=D∗

t (ln rt−1)

·

∂D∗t
∂y

∣∣∣∣∣
y=ln rt−1(G∗

t,i,ε)

∂

∂ε

(
ln
(
rt−1(G∗t,i,ε)(z)

))
pz(z)

∣∣∣∣∣
ε=0

dz.

11

Table 1: Various f -GANs (Nowozin et al., 2016), given the activation function g and the Fenchel
conjugate f c. The corresponding optimal discriminator D∗t (x), derived via pointwise optimization,
and the corresponding coefficient function C .

f -divergence g(D) fc(T) D∗
t (ln(rt−1)) C (x; pd, pt−1)

Kullback-Leibler (KL) D eT−1 1 + ln (rt−1(x)) rt−1(x)

Reverse KL −e−D −1−ln(−T) ln (rt−1(x)) 1

Pearson-χ2
D 1

4T
2 + T 2 (rt−1(x)− 1) 2r2t−1(x)

Squared-Hellinger 1− e−D T
1−T

1
2 ln (rt−1(x))

1
2

√
rt−1(x)

SGAN − ln
(
1 + e−D

)
− ln

(
1− eT

)
ln (rt−1(x)) r2t−1(x) (rt−1(x) + 1)−1

From the optimality condition given in Equation (5), and relations in Table 1, we have:

∂LfG,i,ε(ε)
∂ε

∣∣∣∣
ε=0

=

∫
Z
rt−1(x)g′ (D∗t (ln rt−1(x)))

∂D∗t
∂y

∣∣∣∣∣
y=ln rt−1

·

∂

∂xi
(ln(rt−1(x)))

∣∣∣∣∣
x=G∗

t (z)

∂G∗t,i,ε
∂ε

pz(z) dz

=

∫
Z
rt−1(x)g′ (D∗t (ln rt−1(x)))D∗′t (y)

∣∣
y=ln rt−1︸ ︷︷ ︸

C (x; pd, pt−1)

·

∂

∂xi
(ln(rt−1(x)))

∣∣∣∣∣
x=G∗

t (z)

η(z) pz(z) dz = 0,

where g′(t) denotes the derivatives of the activation function with respect to D evaluated at D∗t , and
D∗′t (y) denotes the derivative of the optimal discriminator function with respect to y = ln(rt−1(x)),
evaluated at ln(rt−1(x)). As in the case of SGANs, from the Fundamental Lemma of Calculus of
Variations, we have:

C (x; pd, pt−1)
∂

∂xi
(ln(rt−1(x)))

∣∣∣∣∣
x=G∗

t (z)

= 0, ∀ z ∈ Z.

The above can be vectorized over all i, giving rise to the result provided in Theorem 2.1:

C (x; pd, pt−1)∇x (ln rt−1(x))

∣∣∣∣
x=G∗

t (z)

= 0, ∀ z ∈ Z.

The coefficient C (x; pd, pt−1) can be derived for each f -GAN (given in Table 1), we discuss the
results here.

KL divergence: Consider the f -GAN with the Kullback-Leibler divergence. We have g′(D∗t) = 1
and D∗′t (x) = 1, which gives us C (x; pd, pt−1) = rt−1(x). Recall that the density ratio is given by
rt−1(G∗t (z)) =

pd(G
∗
t (z))

pt−1(G∗
t (z))

. Since pt−1 denotes the push-forward distribution of the generator of the
previous iteration, for sufficiently small learning rates, the generator samples at time t are sufficiently
close to those at t− 1, and pt−1(G∗t (z)) is non-zero. However, if the generated samples are far from
the data density, pd(G∗t (z)) is close to zero, resulting in vanishing gradients while training — Even
if the scores do not match, the training loss is zero, as pd(Gθt(z))→ 0.

Reverse-KL (RKL) divergence: For the reverse-KL-based f -GAN, we have g′(D∗t) = r−1t−1(x) and
D∗′t (x) = 1. As a consequence, the coefficient C (x; pd, pt−1) is unity. Therefore, when trained
with the RKL loss, it is clear that the generator would not suffer from vanishing gradients. This
observation is consistent with the literature, as Nguyen et al. (2017) and Shannon et al. (2020) have
both observed that the non-saturating GAN loss can be seen as a smoothened RKL loss.

12

Pearson-χ2 divergence: The Pearson-χ2 GAN can be seen as a special case of LSGAN. Here,
we have g′(D∗t) = 1 and D∗′t (x) = rt−1(x). The coefficient C (x; pd, pt−1) = r2t−1(x) grows
quadratically in pd, resulting in vanishing gradients in a more pronounced manner than in KL-GANs.
We discuss the effect of choosing alternative class labels in LSGAN, those that do not lead to the
Pearson-χ2 GAN, in Appendix C.3.

Squared-Hellinger divergence: In the Squared-Hellinger GAN formulation, we have g′(D∗t) =

r
− 1

2
t−1(x) and D∗′t (x) = 1

2 , which yields C (x; pd, pt−1) = 1
2r

1
2
t−1(x). As the coefficient only

decays as the square-root of pd, we expect that the Squared-Hellinger GAN is relatively more
stable, compared to the Pearson-χ2-divergence based counterpart. This was observed empirically
by Nowozin et al. (2016).

C.2 Optimality of SGAN

As a special case, we consider the original SGAN optimization proposed by Goodfellow et al. (2014):

min
G

max
D
{Ex∼pd [lnD(x)] + Ez∼pz [ln(1−D(G(z)))]} .

In practice, the optimization is an alternating one, wherein the discriminator Dt is derived given
the generator of the previous iteration, Gt−1, and the subsequent generator optimization involves
computing Gt, given Dt and Gt−1. For simplicity, we denote the push-forward distribution at
iteration t as pt(x) = Gt,#(pz(z)). Within this formulation, the optimization becomes:

LSD(D;Gt−1) = E
x∼pd

[lnD(x)] + E
x∼pt−1

[ln(1−D(x))], whereD∗t (x)=arg max
D

{
LSD
}

(6)

and LSG(G;D∗t , Gt−1) = E
z∼pz

[ln(1−D∗t (G(z)))], where G∗t (x) = arg min
G

{
LSG
}
. (7)

Ideally, both the discriminator and generator would converge to the optimal solution at t = 1.
However, in practice, through a stochastic-gradient-descent update, under mild assumptions, the
alternating optimization converges to the desired optimum (Franceschi et al., 2022), i.e., pg converges
to the pd in the limit (limt→∞ pt(x) = pd(x)). Optimization of the loss in Equation (6) can be
carried out pointwise (Goodfellow et al., 2014), with the resulting optimum given by:

D∗t (x) =
pd(x)

pd(x) + pt−1(x)
. (8)

Theorem C.1. Consider the generator cost in Equation (7), and the optimal discriminator given by
Equation (8). The optimal SGAN generator that minimizes LSG satisfies

∇x ln (pt−1(x))
∣∣
x=G∗

t (z)
= ∇x ln (pd(x))

∣∣
x=G∗

t (z)
, (9)

where z ∼ pz , and ∇x ln pt−1 is the score of the push-forward generator distribution Gt−1,#(pz).

Proof. Recall the SGAN generator optimization problem:

LSG(G; D∗t , Gt−1) = E
x∼pd

[ln(D∗t (x))] + E
z∼pz

[ln(1−D∗t (G(z)))]

G∗t (x) = arg min
G

{
LSG(G; D∗t , Gt−1)

}
, where D∗t (x) =

pd(x)

pt−1(x) + pd(x)
.

The optimal discriminator was originally derived through a point-wise optimization by Goodfellow
et al. (2014), but later shown to be consistent with the functional form of optimization by Asokan
& Seelamantula (2023). Since the expectation with respect to the data term in LSG does not involve
the generator samples at the current iteration t, it can be ignored with respect to the optimization. A
similar approach was considered by Franceschi et al. (2022) in analyzing the NTK-GAN formulation.
Expanding the integral, and substitute in for the optimal discriminator D∗t yields:

LSG(G) =

∫
Z

ln

(
pt−1(G(z))

pt−1(G(z)) + pd(G(z))

)
pz(z) dz,

where Z denotes the support of the input distribution pz . The optimization of LSG is a functional
one, and can be found by computing the first variation, and setting it to zero under the Fundamental

13

Lemma of Calculus of Variations. The perturbed loss LSG,i,ε is defined as in the case of f -GANs (cf.
Appendix C.1):

LSG,i,ε(ε) =

∫
Z

ln

(
pt−1

(
G∗t,i,ε(z)

)
pt−1

(
G∗t,i,ε(z)

)
+ pd

(
G∗t,i,ε(z)

)) pz(z) dz,

Differentiating LG,i,ε with respect to epsilon and equating it to zero at ε = 0 yields:

∂LSG,i,ε(ε)
∂ε

∣∣∣∣
ε=0

=

∫
Z

(
pt−1

(
G∗t,i,ε(z)

)
+ pd

(
G∗t,i,ε(z)

)
pt−1

(
G∗t,i,ε(z)

)) ∣∣∣∣∣
ε=0

·

∂

∂ε

(
pt−1

(
G∗t,i,ε(z)

)
pt−1

(
G∗t,i,ε(z)

)
+ pd

(
G∗t,i,ε(z)

))︸ ︷︷ ︸
T1

pz(z) dz

= 0.

Let x = G∗t,i,ε(z)
∣∣
ε=0

= G∗t (z). The term T1 can be simplified as:

T1 =

pd(G∗t,i,ε(z))∂pt−1(y)
∂yi

∣∣
y=G∗

t,i,ε(z)
− pt−1(G∗t,i,ε(z))∂pd(y)∂yi

∣∣
y=G∗

t,i,ε(z)(
pd(G∗t,i,ε(z)) + pt−1(G∗t,i,ε(z))

)2
∣∣∣∣∣

ε=0

η(z)

=

(
pd(x)∂pt−1(x)

∂xi
− pt−1(x)∂pd(x)∂xi

(pd(x) + pt−1(x))
2

)
η(z).

Substituting back for T1 in
∂LSG,i,ε(ε)

∂ε and simplifying yields:

∂LSG,i,ε(ε)
∂ε

∣∣∣∣
ε=0

=

∫
Z
pz(z)

(
pd(x)p′t−1,i(x)− pt−1(x)p′d,i(x)

pt−1(x) (pd(x) + pt−1(x))

)
η(z)

∣∣∣∣∣
x=G∗

t (z)

= 0,

where p′t−1,i and p′d,i denote the derivative of pt−1 and pd, respectively, with respect to xi, the ith

entry of the argument x. Then, from the Fundamental Lemma of the Calculus of Variations, we have:

pz(z)

(
pd(x)p′t−1,i(x)− pt−1(x)p′d,i(x)

pt−1(x) (pd(x) + pt−1(x))

) ∣∣∣∣∣
x=G∗

t (z)

= 0, ∀ z ∈ Z.

Since pz(z) is non-zero over its support Z , and if pt−1(x) 6= 0 for all x = G∗t (z) (which is a
reasonable assumption to make, since pt−1 is the push-forward distribution of the generator), the
optimality condition becomes:

pd(x)p′t−1,i(x)− pt−1(x)p′d,i(x)

∣∣∣∣
x=G∗

t (z)

= 0, ∀ z ∈ Z.

Rearranging and simplifying yields:

∂ ln pt−1(x)

∂xi

∣∣∣∣
x=G∗

t (z)

=
∂ ln pd(x)

∂xi

∣∣∣∣
x=G∗

t (z)

, ∀ z ∈ Z.

Since the analysis holds identically for all i, we have:

∇x ln (pt−1(x))
∣∣
x=G∗

t (z)
= ∇x ln (pd(x))

∣∣
x=G∗

t (z)
, ∀ z ∈ Z.

which is the desired result of Theorem C.1.

The optimality condition on G∗t (x) can be derived element-wise through the Fundamental Lemma of
Calculus of Variations and vectorized to yield the result in Theorem C.1. The above result is valid
only for those x such that both pd(x) and pt−1(x) are non-zero.

14

C.3 Non-divergence-minimizing GAN Formulations

In this section, we consider an example GAN formulation that does not lie within the divergence
minimization framework. The results serve to show that the proposed approach can be applied to any
existing GAN variant.

Least-squares GAN: Consider the LSGAN formulation presented by Mao et al. (2017) with the
discriminator and generator loss given by:

LLSD (D; Gt−1) = E
x∼pd

[
(D(x)− b)2

]
+ E

x∼pt−1

[
(D(x)− a)2

]
and

LLSG (G; D∗t , Gt−1) = E
x∼pd

[
(D∗t (x)− c)2

]
+ E

z∼pz

[
(D∗t (G(z))− c)2

]
,

respectively, where a and b are the class-labels assigned by the discriminator to real and fake samples,
respectively. The generator is trained to create samples such that they are classified as c by the
discriminator. The discriminator optimization can be carried out pointwise, giving rise to the optimal
discriminator:

D∗t (x) =
apt−1(x) + bpd(x)

pt−1(x) + pd(x)
. (10)

As in the case of SGANs, the generator loss can be expanded into the integral form, and evaluated at
perturbed location about the optimal solution G∗t,i,ε, which yields:

LLSG,i,ε(ε) =

∫
Z

(
D∗t (G∗t,i,ε(z))− c

)2
pz(z) dz

⇒
∂LLSG,i,ε(ε)

∂ε

∣∣∣∣
ε=0

=

∫
Z

2
(
D∗t (G∗t,i,ε(z))− c

) ∣∣∣∣
ε=0

∂D∗t (G∗t,i,ε(z))

∂ε

∣∣∣∣
ε=0

pz(z) dz

=

∫
Z

2 (D∗t (x)− c)
∣∣∣∣
x=G∗

t (z)

∂D∗t (x)

∂xi

∣∣∣∣
x=G∗

t,i,ε(z)

η(z)pz(z) dz = 0 (11)

Given the optimal LSGAN discriminator in Equation (10), we have:

(D∗t (x)− c) =
(a− c)pt−1(x) + (b− c)pd(x)

pt−1(x) + pd(x)
and

∂D∗t (x)

∂xi
=

(b− a)
(
pd(x)p′t−1,i(x)− pt−1(x)p′d,i(x)

)
(pt−1(x) + pd(x))2

Substituting for the above into Equation (11) yields:∫
Z

(b− a) ((a− c)pt−1(x) + (b− c)pd(x))

(pt−1(x) + pd(x))
3︸ ︷︷ ︸

C(x; pt−1,pd,a,b,c)

·

(
pd(x)p′t−1,i(x)− pt−1(x)p′d,i(x)

) ∣∣∣∣
x=G∗

t,i,ε(z)

η(z)pz(z) dz = 0,

where C(x; pt−1, pd, a, b, c) is the coefficient term, similar to the one seen in the f -GAN formulation,
that also depends on the choice of class-labels (a, b, c). From the Fundamental Lemma of Calculus of
Variations, we have:

C(x; pt−1, pd, a, b, c)
(
pd(x) p′t−1,i(x)− pt−1(x) p′d,i(x)

) ∣∣∣∣
x=G∗

t,i,ε(z)

= 0,

As in the case of f -GANs, we see that the least-squares GAN also results in a score-matching loss,
when C(x; pt−1, pd, a, b, c) is non-zero. Mao et al. (2017) propose two choices of class labels – (i)
(a, b, c) = (−1, 0, 1), which satisfy the conditions that b− c = 1 and a− c = −1, resulting in the
Pearson-χ2 divergence-based GANs; and (2) (a, b, c) = (0, 1, 1), which leads to stabler training.

15

From the solution above, we see that,

When (a, b, c) = (−1, 0, 1), we have C(x; pt−1, pd, a, b, c) =
1

(pt−1(x)− pd(x))2
, and

When (a, b, c) = (0, 1, 1), we have C(x; pt−1, pd, a, b, c) =
−pt−1(x)

(pt−1(x)− pd(x))3
.

For either case, for sufficiently small learning rates, the updated sample x = G∗t (z) is sufficiently
close to the sample generated at the previous iteration, and we have pt−1(x) > 0. As a result, we see
that even when the loss does not correspond to a divergence minimizing cost, the class label (a, b, c)
can be chosen such that the LSGAN generator optimization results in a score-matching cost.

C.4 Computing the Score of the Generator (Proof of Lemma 2.2)

Consider the push-forward generator distribution at time t, given by pt(x) = Gθt,#(pz), where
pz = N (z;µz,Σz). We assume that the generator Gθt : Rn → Rn is an invertible function, with the
inverse given by G−1θt . Then, by the change-of-variables formula, we have:

pt(x) = pz(G
−1
θt

(x))
∣∣∣det JG−1

θt

(x)
∣∣∣ .

If the generator is invertible, we have,

pt(x) = pz(G
−1
θt

(x))
∣∣∣det J−1Gθt

(G−1θt (x))
∣∣∣ = pz(G

−1
θt

(x))
∣∣det JGθt (G

−1
θt

(x))
∣∣−1 .

Then, the score of the generator is given by:

∇x ln (pt(x)) = ∇x ln
(
pz(G

−1
θt

(x))
∣∣det JGθt (G

−1
θt

(x))
∣∣−1)

= ∇x

(
ln
(
pz(G

−1
θt

(x))
)
− ln

∣∣det JGθt (G
−1
θt

(x))
∣∣)

Then, given the transformation x = Gθt(z), we have

∇x ln (pt(x)) = J−TGθt
(z)
(
∇z

(
ln (pz(z))− ln

∣∣det JGθt (z)
∣∣))

In most GAN frameworks, pz is set to be the standard Gaussian N (z; 0, I. Simplifying for the score
of the Gaussian, we get

∇x ln (pt(x)) = J−TGθt
(z)

(
− z −∇z ln

∣∣det JGθt (z)
∣∣︸ ︷︷ ︸

T1

)
,

which is the desired result of Lemma 2.2. In practice, the Jacobian of the generator can be computed
using automatic differentiation in standard libraries such as TensorFlow (Abadi et al., 2016) or
PyTorch (Paszke et al., 2019). The term T1 can further be simplified though well-known matrix
differentiation properties. Consider the following:

T1 = ∇z ln
∣∣det JGθt (z)

∣∣
= ∇zJGθt ⊗∇JGθt

ln
∣∣det JGθt (z)

∣∣ ,
where ∇zJGθt denotes a Hessian tensor in Rn×n×d, with the (i, j, k)th entry given by[
∇zJGθt

]
i,j,k

=
∂[JGθt

]i,j

∂zk
. Applying the matrix identity ∇M ln |detM | = M−T (Petersen

et al., 2008) yields:

T1 =
(
∇zJGθt ⊗ J−TGθt

)
(z),

with entries given by [T1]i =
∑
j,k

[
∇zJGθt

]
i,j,k
·
[
J−TGθt

]
j,k

; i = 1, 2, . . . , d,

where the Hessian tensor can be computed either through automatic differential, or approximated by
the Jacobian outer product.

16

C.5 ScoreGANs with Rectangular Jacobian Matrices

We now extend the results of Appendix C.4 to the scenario when Gθt : Rd → Rn; d � n. Papa-
makarios et al. (2021) showed that when the data x ∈ Rn is assumed to lie in a low, d-dimensional
manifold by means of the mapping (Gθt), we can define the metric M(z) induced on the space X as:

M(z) = JT
Gθt

(z)JGθt (z).

Then, the change-of-variables formula for the transformation of random variables with measures
defined over X is:

pt(x) = pz(G
−1
θt

(x))
(
det M(G−1θt (x))

)− 1
2 .

An analysis similar to the one provided in Appendix C.4 can now be applied to derive the following
approximation:

∇x ln (pt(x)) ≈ J†
T

Gθt
(z)

(
− z − 1

2
∇z ln det

(
JT
Gθt

JGθt

)
︸ ︷︷ ︸

T1

)
,

where J†Gθt
denotes the pseudoinverse of the Jacobian matrix. Further, simplifying T1 using the

standard matrix identity∇A ln |detATA| = 2A†
T

(Petersen et al., 2008) yields

T1 = ∇zJGθt (z)⊗ J†
T

Gθt
(z),

with entries given by [T1]i =
∑
j,k

[
∇zJGθt

]
i,j,k
·
[
J†

T

Gθt

]
j,k

; i = 1, 2, . . . , d.

While the above result provides a closed-form approximation to the generator density in the most
general sense, additional constrained can be enforced on the generator network architecture, as in the
case of normalizing flows (Papamakarios et al., 2021) to further simplify computation.

D Additional Experimentation on ScoreGANs

In this appendix, we present additional results from training ScoreGAN on Gaussian data. The
training procedure for ScoreGANs is presented in Algorithm 1.

D.1 Additional Experimental Results on Gaussian Learning

Training Parameters: All models are trained using the TensorFlow (Abadi et al., 2016) library. On
the unimodal Gaussian experiments, the generator is a linear transformation x = Az + b. The
target Gaussian is pd = N (512, 0.75I2) in 2-D and pd = N (0.71n, 0.02In) in the n-D case for
n > 2. In baseline GAN variants with a network-based discriminator, we use a four-layer perceptron
architecture, with 128, 32, 16, and 1 node(s), respectively in each layer. The Leaky-ReLU activation
is used across all layers. The networks are trained with the Adam (Kingma & Ba, 2015) optimizer. A
batch size of 500 is used. The models are compared using the Wasserstein-2 distance between the
target and source GaussiansW2,2(pd, pg) = ‖µd − µg‖22 + Trace

(
Σd + Σg − 2

√
ΣdΣg

)
. On the

Gaussian-mixture model (GMM) learning tasks, the generator is a three-layer perceptron architecture,
with 32, 16, and 2 node(s), respectively in each layer. The input dimensionality is 100 for all the
baseline variants. For ScoreGAN, we compare against both a 2-D input (resulting in a square,
invertible Jacobian), and a 100-D input (resulting in a rectangular Jacobian matrix).

Additional results on Gaussian and GMM learning: On the GMM learning task, we consider
ablation experiments on training ScoreGAN with, and without, the rectangular Jacobian. In the
scenario where the input and output dimensions match, ScoreGAN fails to converge, and the network
has insufficient capacity to map an unimodal Gaussian to a multimodal one. Figure 2 presents the
generator and data distributions, superimposed on the gradient field over which the generator is
optimized, for various baseline variants, ScoreGAN. In the case of the baselines, this corresponds to
the gradient of the discriminator, while in ScoreGAN, it is the score of the target dataset. Table 2
compares the Batch Compute Time between generator updates for the baseline GANs and ScoreGAN.
ScoreGANs are more compute-intensive due to the need for computing the score of the generator
network in each update step.

17

Table 2: A comparison of baseline GAN variants and ScoreGAN in terms of their training time
(measured in seconds per batch) on Gaussian learning tasks. ScoreGANs are more compute-intensive
due to the need for computing the score of the generator network in each update step.

GAN Variant
Batch Compute Time (seconds/batch)

2-D data 128-D data

Batch size 500 Batch size 100

SGAN 0.4651± 0.023 0.2031± 0.023

LSGAN 0.4622± 0.021 0.1973± 0.031

LS-DRAGAN 0.4854± 0.020 0.2066± 0.019

WGAN-GP 0.4553± 0.031 0.1849± 0.031

WGAN-Rd 0.4427± 0.032 0.1932± 0.022

Poly-WGAN 0.2316± 0.012 0.1571± 0.020

GMMN (RBFG) 0.2015± 0.020 0.1881± 0.031

GMMN (IMQ) 0.1981± 0.021 0.1579± 0.019

ScoreGAN (Ours) 0.3222± 0.022 1.1178± 0.015

Algorithm 1: ScoreGAN − Training the GAN generator trained to minimize the distance
between its score and the score of the data.

Input: Training data x ∼ pd, Gaussian prior distribution pz = N (µz,Σz), Max training
iterations T .

Parameters: Batch size M , optimizer learning rate η.
Models: Generator: Gθ; Data score model: Sdφ = ∇x ln (pd(· ; φ)).
while t = 1,2,. . . ,T do

Sample: z` ∼ pz – A batch of M noise samples.
Sample: x` = Gθt(z`) – Generator output samples.
Compute: JGθt (z`) – Jacobian of the generator evaluated at z`.
Compute: ∇xln pt – Score of the generator evaluated at Gθt(z`) (cf. Lemma 2.2):

∇xln pt(x)|x=x`=−J−TGθt

(
∇z ln|det JGθt (z`)|+ z`

)
,

Compute: Score-matching-based generator loss (cf. Section 2):
LScore
G (θt) =

∑
x`
∇x‖ ln (pt(x`))− Sdφ(x`)‖22.

Update: Generator Gθt+1 : θt+1 = η∇θ[LScore
G (θ)]|θ=θt – Generator at θt+1 is the one

that minimizes the score matching loss of the generator at θt
Output: Samples output by the Generator: x = GθT (z)

D.2 Computational Resources

All experiments were carried out using a TensorFlow 2.0 (Abadi et al., 2016) backend. Experiments on
NCSN were built atop a publicly available implementation (URL: https://github.com/Xemnas0/
NCSN-TF2.0). Experiments were performed on SuperMicro workstations with 256 GB of system
RAM comprising two NVIDIA GTX 3090 GPUs, each with 24 GB of VRAM.

D.3 Source Code

The TF 2.0 (Abadi et al., 2016) based source code for implementing ScoreGANs is available online
at https://github.com/DarthSid95/ScoreFloWGANs.

18

https://github.com/Xemnas0/NCSN-TF2.0
https://github.com/Xemnas0/NCSN-TF2.0
https://github.com/DarthSid95/ScoreFloWGANs

SG
A

N
L

SG
A

N
L

S-
D

R
A

G
A

N
W

G
A

N
-G

P
W

G
A

N
-R

d
Sc

or
eG

A
N

10 iterations 250 iterations 1000 iterations 5000 iterations 15000 iterations

Figure 2: (Color online) Convergence of the generator samples (shown in green) to the target
two-component Gaussian (shown in red), pd(x) = 1

5N (x;−51, I) + 4
5N (x; 51, I). The quiver plot

depicts the gradient field of the discriminator on baseline variants, and the score of the dataset in the
case of ScoreGAN. While SGAN collapses to the more pronounced mode, ScoreGAN converges to
both the modes accurately, faster than the baseline counterparts.

19

	Introduction
	Our Contribution

	Divergence Minimizing GANs
	Experimental Validation
	Discussions and Conclusion
	 Appendix
	Mathematical Preliminaries
	An Overview of Related Works
	Optimality of Divergence-minimizing GANs
	Optimality of f-GAN (Proof of Theorem 2.1)
	Optimality of SGAN
	Non-divergence-minimizing GAN Formulations
	Computing the Score of the Generator (Proof of Lemma 2.2)
	ScoreGANs with Rectangular Jacobian Matrices

	Additional Experimentation on ScoreGANs
	Additional Experimental Results on Gaussian Learning
	Computational Resources
	Source Code

