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Abstract

Generative adversarial networks (GANs) comprise a generator, trained to learn
the underlying distribution of the desired data, and a discriminator, trained to
distinguish real samples from those output by the generator. A majority of GAN
literature focuses on understanding the optimality of the discriminator through
integral probability metric (IPM) or divergence based analysis. In this paper,
we propose a unified approach to analyzing the generator optimization through
variational approach. In f -divergence-minimizing GANs, we show that the optimal
generator is the one that matches the score of its output distribution with that of
the data distribution, while in IPM GANs, we show that this optimal generator
matches score-like functions, involving the flow-field of the kernel associated with
a chosen IPM constraint space. Further, the IPM-GAN optimization can be seen as
one of smoothed score-matching, where the scores of the data and the generator
distributions are convolved with the kernel associated with the constraint. The
proposed approach serves to unify score-based training and existing GAN flavors,
leveraging results from normalizing flows, while also providing explanations for
empirical phenomena such as the stability of non-saturating GAN losses. Based
on these results, we propose novel alternatives to f -GAN and IPM-GAN training
based on score and flow matching, and discriminator-guided Langevin sampling.

1 Introduction

Generative modeling refers to the process of learning the underlying distribution of a given dataset,
either with the aim of evaluating the density, or generating new unseen samples from the underlying
distribution. Generative adversarial networks (GANs, Goodfellow et al. (2014)) have become one
of the most popular frameworks for image generation, owing to lower sampling times and state-of-
the-art sample quality (Karras et al., 2020, 2021; Sauer et al., 2022). GANs are a two-player game
between a generator network G : Rd → Rn and a discriminator network D : Rn → R. In most
GAN settings, d ≤ n. The generator accepts a noise vector z ∼ pz; z ∈ Rd, typically Gaussian or
uniform distributed, and transforms it into a fake sample G(z), with the push-forward distribution
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Figure 1: ( Color online) The loss landscape of the proposed ScoreGAN and FloWGAN variants,
juxtaposed against the (Stein) score of the target data, for a Gaussian mixture pd = 1

5N (−512, I2) +
4
5N (512, I2). The GAN generator distribution, pg , is the standard normal Gaussian. The f -divergence
GAN is an instance of ScoreGANs, where the generator is trained to minimize the error between the
the score of pg (shown in pink) and pd. All integral probability metric (IPM) minimizing GANs are
instances of FloWGANs that minimize the gradient field of the density difference pd − pg convolved
with a kernel κ. The repulsive nature of the gradient field in FloWGANs prevents vanishing gradients.

pg = G#(pz). The discriminator accepts an input drawn either from the target distribution, x ∼
pd; x ∈ Rn, or from the output of a generator, and learns real versus fake classifier. The objective is
to learn the optimal generator — one that can generate realistic samples.

GANs Losses: In the standard GAN (SGAN, Goodfellow et al. (2014)), and the least-squares GAN
(LSGAN, Mao et al. (2017)) formulations, the discriminator models a chosen divergence metric
between the target and generator distributions, while the generator network is trained to minimize this
divergence. For example, the Jensen-Shannon divergence in SGAN, or the Pearson-χ2 divergence
in LSGAN. Nowozin et al. (2016) generalized the formulation to account for any f -divergence,
while Uehara et al. (2016) consider extension to Bregman divergences as well. Owing to the training
instability of divergence-minimizing GANs on non-overlapping distributions, Arjovsky & Bottou
(2017) proposed integral probability metrics (IPM) as a viable alternative. In IPM-GANs, the
discriminator performs the role of a critic, and approximates the IPM. The choice of the metric
constrains the class of functions from which the critic is drawn. For example, in Wasserstein
GAN (WGAN), Arjovsky et al. (2017) consider Lipschitz-1 critics. In practice, the Lipschitz
constraint is approximated through a gradient penalty enforced on the discriminator (Gulrajani et al.,
2017). Mroueh et al. (2018), Adler & Lunz (2018), and Asokan & Seelamantula (2023b) consider
discriminator functions drawn from Sobolev spaces, with a corresponding penalty on the energy in
the gradient. Gretton et al. (2012) showed that the minimization of IPM losses can be equivalently
solved through the minimization of kernel-based statistics in a reproducing-kernel Hilbert space
(RHKS). Maximum-mean discrepancy GANs (MMD-GANs) (Li et al., 2017; Bińkowski et al., 2018)
and Coulomb GAN (Unterthiner et al., 2018) are examples of kernel-based GANs.

Optimality in GANs: A major research focus in GAN optimization is on the optimality of the
discriminator function. While Goodfellow et al. (2014) and Mao et al. (2017) considered a pointwise
optimization of the discriminator, Mroueh et al. (2018); Yi et al. (2023) and Asokan & Seelamantula
(2023a) consider a functional approach, and derived differential equations that govern the optimal
discriminator, given the generator. Along another vertical, Pinetz et al. (2018), Stanczuk et al. (2021)
and Korotin et al. (2022) showed that, in practical gradient-descent-based training, the optimal
discriminator is not attained. However, a similar in-depth analysis of the optimal generator in GANs
is lacking. Existing approaches rely on an empirical evaluation of the generator (Zhu et al., 2020),
analyze the convergence considering infinite-width network (infinite number of nodes per layer)
approximations (Franceschi et al., 2022), or derive constraints on the generator when the generator
and discriminator are jointly optimized (Liang, 2021). While in most scenarios, the generator can
be linked to minimizing the chosen divergence or IPM, the actual functional optimization has not
been thoroughly explored. What does the closed-form optimization of the generator lead to in
GANs? In this paper, this is the gap in literature that we seek to answer.
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1.1 Our Contribution

We consider the alternating optimization in various divergence-minimizing and IPM-based GAN
formulations, retaining the functional form of the optimal discriminator, and analyze the generator
loss function through the lens of variational calculus. Considering the family of f -GANs, we
show that minimizing the f -divergence results in an optimal generator which, given the optimal
discriminator, minimizes the error between the score (the gradient of the log-probability) of the
target data distribution, and the score of the generator’s push-forward distribution. This permits
interpreting the f -GANs as performing score-matching. Owing to the score-matching link, our
divergence-minimizing approach is entitled ScoreGAN.

Considering gradient-regularized Wasserstein GAN losses, we show that the optimal generator is the
one that minimizes a smoothed score-matching difference term, where the scores are conditioned
by means of the kernel associated with the RKHS from which the IPM discriminator is drawn, akin
to noise conditioned score networks (NCSN) (Song & Ermon, 2019). Futher, we show that, in IPM
GANs, the smoothed score-matching formulation is equivalent to one of minimizing a flow induced
by the gradient field of a kernel. The kernel-flow based formulation is referred to as FloWGAN. These
results can be seen as a generalization of Sobolev descent (Mroueh et al., 2019), MMD-Flows (Arbel
et al., 2019) and MonoFlows (Yi et al., 2023). A visualization of the generator loss landscape in
ScoreGANs and FloWGANs, juxtaposed with the score of the data is presented in Figure 1. The
results showcase a fundamental connection between the various GAN, score-based and flow-based
generative models.

As a proof of concept, we validate training GANs with score-matching and flow-minimizing costs,
using results from normalizing flows (Papamakarios et al., 2021) and NCSNs (Song & Ermon, 2019)
on unimodal and multimodal Gaussians, and latent-space matching on image, akin to Wasserstein
autoencoders (Tolstikhin et al., 2018) and latent diffusion (Rombach et al., 2022). To demonstrate the
interplay between GANs and score-based approaches, we also present experiments on generating
images by replacing the score network with the gradient of the kernel in a Langevin sampler.

2 Background on Scores and Flows

Score Matching: Score matching was originally proposed by Hyvärinen (2005) in the context of
independent component analysis. Consider the underlying distribution of the data to be modeled,
pd(x). The (Stein) score (Liu et al., 2016) is the gradient of logarithm of the density function with
respect to the data itself,∇x ln (pd(x)). It generates a vector field that points in the direction where
the data density grows most steeply. In score matching, the score can be approximated by a parametric
function SDφ (x) obtained by minimizing the Fisher divergence (Cover & Thomas, 2006):

F (SDφ , pd)=
1

2
E

x∼pd

[∥∥SDφ (x)−∇x ln (pd(x))
∥∥2
2

]
. (1)

The output of the trained network is used to generate samples through annealed Langevin dynamics
in noise-conditioned score networks (NCSN) (Song & Ermon, 2019). Recent approaches aim at
either improving the approximation quality of the score network (Song et al., 2020; Ho et al., 2020;
Song & Ermon, 2020; Song et al., 2021b; Gong & Li, 2021), or better discretizing the underlying
differential equations to accelerate sampling (Jolicoeur-Martineau et al., 2021; Karras et al., 2022).

Normalizing Flows: Popularized by Rezende & Mohamed (2015), normalizing flows leverage the
change-of-variables formula to learn a transformation from a parametric prior distribution to a target.
The network architecture is constrained so as to facilitate easy computation of the Jacobian (Dinh et al.,
2015, 2017; Kingma & Dhariwal, 2018). Recent approaches design flows based on autoregressive
models (Kingma et al., 2016; Papamakarios et al., 2017; Su & Wu, 2018), or architectures motivated
by the Sobolev GAN loss (Mroueh et al., 2019; Mroueh & Rigotti, 2020). Glaser et al. (2021); Ansari
et al. (2021) use KL-flow to iteratively improve the noise vector input to GANs.

In the GAN context, consider the generator push-forward distribution pg = G#(pz). For the main
results of this paper, we assume G : Rn → Rn, where the generator is a diffeomorphism with a
well-defined inverse G−1, both G and its inverse being differentiable. Therefore, z ∈ Rn is no longer
the latent representation. Then, by the change-of-variables formula, we have:

pg(x) = pz(z) |det JG(z)|−1, where z = G−1(x), (2)
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where in turn, JG(z) is the Jacobian of the generator. Standard mathematical notations used in this
paper, and relevant background on the Fundamental Lemma of the Calculus of Variations (Gel’fand &
Fomin, 1964) are provided in Appendix A. We now present results discussing the optimal generator
in divergence minimizing GANs.

3 Divergence Minimizing GANs

Consider the SGAN optimization: minG maxD {Ex∼pd [lnD(x)] + Ez∼pz [ln(1−D(G(z)))]} . In
practice, the optimization is an alternating one, wherein the discriminator Dt is derived given
the generator of the previous iteration, Gt−1, and the subsequent generator optimization involves
computing Gt, given Dt and Gt−1. For simplicity, we denote the push-forward distribution at
iteration t as pt(x) = Gt,#(pz(z)). Within this formulation, the optimization becomes:

LSD(D;Gt−1) = E
x∼pd

[lnD(x)] + E
x∼pt−1

[ln(1−D(x))], whereD∗t (x)=arg max
D

{
LSD
}

(3)

and LSG(G;D∗t , Gt−1) = E
z∼pz

[ln(1−D∗t (G(z)))], where G∗t (x) = arg min
G

{
LSG
}
. (4)

Ideally, both the discriminator and generator would converge to the optimal solution at t = 1.
However, in practice, through a stochastic-gradient-descent update, under mild assumptions, the
alternating optimization converges to the desired optimum (Franceschi et al., 2022), i.e., pg converges
to the pd in the limit (limt→∞ pt(x) = pd(x)). Optimization of the loss in Equation (3) can be
carried out pointwise (Goodfellow et al., 2014), with the resulting optimum given by:

D∗t (x) =
pd(x)

pd(x) + pt−1(x)
. (5)

Assume that the generator has not converged, i.e., pt−1(x) 6= pd(x), and that the distribution pd and
pt−1 have overlapping support. Then, the following theorem gives us the optimality condition for
generator (G∗t ), given D∗t , such that pt(x) = G∗t,#(pz) = pd(x).
Theorem 3.1. Consider the generator cost in Equation (4), and the optimal discriminator given by
Equation (5). The optimal SGAN generator that minimizes LSG satisfies

∇x ln (pt−1(x))
∣∣
x=G∗

t (z)
= ∇x ln (pd(x))

∣∣
x=G∗

t (z)
, (6)

where z ∼ pz , and ∇x ln pt−1 is the score of the push-forward generator distribution Gt−1,#(pz).

The proof is provided in Appendix C.1. The optimality condition on G∗t (x) can be derived element-
wise through the Fundamental Lemma of Calculus of Variations and vectorized to yield the result in
Theorem 3.1. The above result is valid only for those x such that both pd(x) and pt−1(x) are non-
zero. The implications of such a strong condition are discussed in Section 5. Owing to the score-based
approach to training the generator, the proposed approach is called ScoreGAN. Before we explore
the implications of the score-matching form of the optimal generator, we consider a generalization
to all f -GANs. Nowozin et al. (2016) considered f -divergences of the form: Df (pd‖ pt−1) =∫
X f (rt−1(x)) pd(x) dx,, where f : R+ → R is a convex, lower-semicontinuous function over the

support X and satisfies f(1) = 0 and rt−1(x) is the density ratio rt−1(x) = pd(x)
pt−1(x)

. The generator
loss is given by

LfG(G;D∗t , Gt−1) = E
x∼pd

[g(D∗(x))]− E
x∼pt−1

[f c(g(D∗(x)))] , (7)

where the real-values discriminator Dt is restricted to a desired domain by means of an activation
function g∗(·), and f c denotes the Fenchel conjugate of f . The following theorem presents the
optimal generator transformation, given D∗t , for f -GANs.
Theorem 3.2. Consider the generator loss in f -GANs, given by Equation (7). The optimal f -GAN
generator satisfies the following score-matching condition:

C (x; pd, pt−1)∇x (ln rt−1(x)) = 0, where (8)

C (x; pd, pt−1) = rt−1(x)g′(t)
∣∣
t=D∗

t
D∗′t (y)

∣∣
y=ln(rt−1)

,

where in turn, g′(t) denotes the derivative of the activation function with respect to D evaluated
at D∗t , D∗′t (y) denotes the derivative of the optimal discriminator function with respect to y =
ln(rt−1(x)), evaluated at ln(rt−1(x)) (cf. Table 1, Appendix C.2) and x = G∗t (z), z ∼ pz .
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The proof follows along the lines as that of Theorem 3.1 by simplifying the costs in Equation (7),
and substituting for D∗t . The details are discussed in Appendix C.2. While Theorem 3.2 gives
the general solution for f -GANs, we remark that the solution is similar to that of the SGAN and
subsumes the result of Theorem 3.1 for appropriate choices of g and f c. Additionally, for z such that
C (x; pd, pt−1) 6= 0, the derived solution can further be simplified to yield the score matching cost:

∇x ln (pt−1(x))
∣∣
x=G∗

t (z)
= ∇x ln (pd(x))

∣∣
x=G∗

t (z)
.

Although the result shows that all f -GAN generators are inherently score-matching in nature, the
effect of C accounts for the difference in training stability observed across f -GAN variants. We
discuss these results in Appendix C.2. For example, C is unity only for reverse-KL (RKL) GANs,
i.e., the generator goes to zero only when the scores match exactly. This is consistent with empirical
results by Nguyen et al. (2017); Shannon et al. (2020), where the relatively stabler non-saturating
GAN loss considered by Goodfellow et al. (2014) was shown to approximate an RKL loss in practice.

4 The Optimal Generator in IPM GANs

Arjovsky et al. (2017) proposed Wasserstein GANs (WGANs) as an alternative to divergence mini-
mizing GANs. Motivated by optimal transport, the discriminator (also called the critic) minimizes
the Wasserstein-1 distance between pd and pg. The IPM GAN optimization is defined through
the Kantorovich–Rubinstein duality as: minpg

{
maxD

{
Ex∼pd [D(x)]− Ex∼pg [D(x)] + ΩD

}}
,

where ΩD is an appropriately chosen regularizer. While Arjovsky et al. (2017) enforce a Lipschitz-1
discriminator by clipping the network weights, subsequent variants consider regularizers that bound
the energy in the discriminator gradient (Petzka et al., 2018; Mroueh et al., 2018; Adler & Lunz, 2018;
Asokan & Seelamantula, 2023b), resulting in Sobolev constraint spaces. The optimal discriminator
in these variants has been shown to be the solution to partial differential equations (PDEs) (Mroueh
et al., 2018; Asokan & Seelamantula, 2023b), and can be represented through convolutions with the
Green’s function of the PDEs. As in the f -GAN case, consider the alternating minimization involving
Gt−1, Dt and Gt. The optimal discriminator in gradient-regularized WGANs is (Unterthiner et al.,
2018; Asokan & Seelamantula, 2023b):

D∗t (x) = Cκ ((pt−1 − pd) ∗ κ) (x), (9)
where the kernel κ is the Green’s function to the differential operator governing the optimal dis-
criminator and Cκ is a positive constant. For example, in Poly-WGAN (Asokan & Seelamantula,
2023b), the kernel is a polyharmonic spline kernel, while in MMD-GANs, Li et al. (2017) considered
Gaussian and inverse multi-quadric kernels (cf. Appendix D.1). The following theorem presents the
optimality condition for the generator in kernel-based GANs:
Theorem 4.1. Consider the generator loss given by LκG(G;D∗t , Gt−1) = −Ez∼pz [D

∗
t (G(z))], and

the optimal discriminator given in Equation 9. The optimal IPM-GAN generator satisfies

Cκ

(
E

y∼pt−1

[∇y ln pt−1(y)κ(x− y)]− E
y∼pd

[∇y ln pd(y)κ(x− y)]

) ∣∣
x=G∗

t (z)
= 0, (10)

for all x = G∗t (z), z ∼ pz , where Cκ is a non-zero constant dependent on the kernel κ.

The above theorem shows that the optimal generator in IPM GANs is also one of score-matching,
where the score is conditioned by the kernel function, centered around x. As in f -GANs, the above
condition must be met for all x, which is relatively stringent. We observe that the condition presented
in Theorem 4.1 is equivalent to a condition on the kernel gradient, given by the following lemma.
Lemma 4.2. Consider the optimality condition for the IPM generator, presented in Theorem 4.1.
The condition can equivalently be written as:

Cκ ((pd − pt−1) ∗ ∇xκ) (x)
∣∣
x=G∗

t (z)
= 0, (11)

where ∇xκ denotes the gradient vector of the kernel, and the convolution must be interpreted
element-wise, i.e., pd(x)− pt−1(x) is convolved with each entry of∇xκ.

The proof of Theorem 4.1 and Lemma 4.2 follow analogously to the f -GAN scenario, and are
presented in detail in Appendix D.1. The optimal IPM GAN generator can be seen as minimizing a
proxy to the score – similar to the Stein score, where the gradient field induced by the kernel κ is
maximized at locations where data samples are present. As observed in Coulomb GANs, these are
akin to charge-potential fields, with the attractive data samples and repulsive generator samples.
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5 Interpreting the Optimal Generator

The optimality condition in f -GANs (cf. Theorem 3.2) brings to light the underlying link between
f -GANs and score-based models. While NCSN and its variants rely on Langevin dynamics to model
transformation, the optimal generator in GANs can be interpreted as approximating these iterations
one-shot. In practice, as the score is undefined when either pd(x) or pt−1(x) are zero, the optimality
condition cannot be met pointwise, but must be approximated (cf. Section 6). On the other hand, the
optimality of IPM-GANs link the generator to conditioned score-matching, and flow-based models.
From Theorem 4.1, we see that the generator performs smoothed score-matching. As opposed to
being a pointwise condition on x as in f -GANs, the generator in IPM-GANs minimizes a weighted
average of the score, with the kernel inducing the weight function. This also alleviates convergences
issues arising due to non-overlapping supports of pd and pt−1.

From Lemma 4.2, we see that the gradient field of the kernels convolved with the density difference,
and the data score∇x ln (pd(x)), serve similar purposes, which is to output an arbitrarily large value
at data sample location, and low values elsewhere. Unlike the score, however, the kernel gradients
produce a repulsive force at the location of generator samples, resulting in a push-pull framework –
The target distribution creates a pull, while the generator distribution creates the push. This serves
to validate why IPM GANs typically do not suffer from vanishing gradients (Arjovsky & Bottou,
2017), as opposed to the f -divergence counterparts. When p0(x) is initialized far from the target,
although the influence of the score is weak, the repulsive force of the kernel-based loss is strong.
FloWGANs can also be used to explain denoising diffusion GANs (DDGAN, Xiao et al. (2022)),
wherein a GAN is trained to model the reverse diffusion process, with the generator and discriminator
networks conditioned on the time index. DDGAN can be seen as a special instance of FloWGAN,
with Langevin updates over the gradient field of the time-conditioned discriminator (cf. Appendix D).
FloWGANs can also be viewed as generalized score matching (Lyu, 2009) where the IPM-GAN
generators minimize a generalized score, i.e., given an IPM GAN, an equivalent diffusion model
exists, with the flow field induced by the kernel of the discriminator, and vice versa. We present a
proof-of-concept implementation of this approach in Section 7.2.

6 Practical Considerations

Consider the score matching condition given in Theorem 3.1. We approximate the pointwise
optimality condition with a least-squares cost. Given a neural network generator Gθt , where θt
denotes the network parameters at time t, this gives rise to the Fisher divergence between the scores:

LSc
G (θ)= E

z∼pz

[
‖∇xln(pt−1(x))−∇xln(pd(x))‖22

∣∣
x=Gθt (z)

]
,

where θ∗ = arg minθ LSG(θ). The above loss involves computing two key terms: (i) The score of
the target data; and (ii) The score of the generator distribution. For parametric distributions such as
Gaussians, the score of the data can be computed by means of automatic differentiation (Abadi et al.,
2016; Paszke et al., 2019). In the case of image data, a pre-trained score network SDφ can be used to
approximate the score of the data (Song & Ermon, 2020; Song et al., 2021a; Rombach et al., 2022).

To compute the score of the generator, when the dimensionality of the data is relatively small, say
O(103), the change of variables formula (cf. Equation (2)) can be used. The following lemma
presents the score of the generator distribution.
Lemma 6.1. Consider the push-forward generator distribution pt(x) = Gθt,#(pz), where pz =
N (z;µz,Σz) and Gθt:Rn → Rn. Then, the generator score is given by:

∇xln pt(x)
∣∣
x=Gθt (z)

=−J−TGθt

(
∇z ln|det JGθt (z)|+ z

)
,

where JGθt denotes the Jacobian of the generator Gθt .

The proof is discussed in Appendix C.4. Generalizations considering G : Rd → Rn; d � n are
discussed in Appendix C.5. In very high dimensions, the Jacobian computations are inefficient, and
one could consider training a second score network, SGψ , to approximate the score of the generator,
trained jointly with the generator in a non-adversarial fashion. Although this is a potential alternative
to circumventing evaluation of the generator score in closed-form, given the enormous computational
overhead of ScoreGAN (cf. Appendices C and E), we focus on the FloWGAN formulation.
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The result in Lemma 4.2 links IPM GANs to flow-based models, where the flow-field is induced by
the discriminator kernel. First, we consider training the generator network with a least-squares loss,
similar to ScoreGANs. The following lemma presents the loss function in FloWGAN:
Lemma 6.2. Consider the optimality condition in Equation (10). Let Gθt denote the neural network
generator, parametrized by θt. The FloWGAN generator loss is given by:

LFloW
G = E

z∼pz

∥∥∥∥ ∑
y∼pt−1

∇xκ(x)|x=Gθt(z)−y −
∑
y∼pd

∇xκ(x)|x=Gθt(z)−y
∥∥∥∥2
2

 .
The proof follows akin to the approach used in Coulomb GANs (Unterthiner et al., 2018), and is given
in Appendix D.2. While we use the Euclidean 2-norm to train the GAN on Fisher-like divergences,
one could also consider our distance metrics or norms in the generator loss. Unlike in f -GANs,
Lemma 6.2 hold for all input dimensionalities, i.e., for Gθt : Rd → Rn, ∀ d.

As a proof of concept, we also consider a Langevin sampling approach to generative modeling, where
the score of the data is replaced with the gradient of the kernel-based discriminator. While the score
of the data possesses a strong attractive force in regions close to the target data, it does not influence
samples that are far away. On the other hand, the kernel gradients possess a repulsive term that pushes
particles away from where they previously were, thereby accelerating convergence. We consider the
following update scheme:

xt+1 = xt − αt∇xD
∗
t (xt) + γtzt, where zt ∼ N (0n, In)

and the discriminator gradient is an N -sample estimate with centers consisting of data samples
di ∼ pd, and the set of samples generated at the previous iteration {xt−1 |xt−1 ∼ pt−1}, given by:

∇xD
∗
t (xt) = C′k

∑
gj∼{xt−1}

∇xκ(xt − gj)− C′k
∑

di∼pd

∇xκ(xt − di). (12)

Typically, γt =
√

2αt, while αt is decayed geometrically (Song & Ermon, 2019). Within this
framework, the training time is traded in for memory overhead – We do not require a trained score
network, but require random batches of samples drawn {di ∼ pd} at each sampling step.

7 Experimental Validation

To validate the observations made in Sections 3–4, within a GAN setting, we consider synthetic
experiments on learning Gaussians, and extend the FloWGAN approach to learning the latent-space
of images using pre-trained autoencoder networks. Subsequently, as a proof-of-concept, we provide
results on Langevin sampling with the gradient on the discriminator. While these experiments are not
targeted towards outperforming state-of-the-art GANs (Sauer et al., 2022; Kang et al., 2023), they
serve to illuminate the training dynamics present in these GAN variants.

7.1 Training GANs with Score-based and Flow-based Losses

As baselines, we consider SGAN (Goodfellow et al., 2014), LSGAN (Mao et al., 2017) and WGAN-
GP (Gulrajani et al., 2017). In addition, we compare against gradient-regularized alternatives such as
LS-DRAGAN (Kodali et al., 2017), WGAN-Rd (Mescheder et al., 2018), and kernel-based generative
moment matching networks (GMMNs) with the inverse multi-quadric (IMQ) and Gaussian (RBFG)
kernels (Li et al., 2015), and Poly-WGAN (Asokan & Seelamantula, 2023b).

Experiments on Gaussian data: We present results on learning 2-, 16-, and 128-dimensional uni-
variate Gaussians. The generator is a linear transformation x = Az + b. Additional network
details are given in Appendix E. From Figure 2, we observe that in all three scenarios, GMMNs
and Poly-WGAN converges faster than the baseline GANs owing to the lack of adversarial training.
On low-dimensional Gaussian learning, FloWGAN is on par with Poly-WGAN, while ScoreGAN
converges the fastest. As the dimensionality increases, the convergence of Poly-WGAN worsens, as
the kernel decays to zero quickly, while FloWGAN, that relies on the gradient of the kernel, remains
unaffected. SGAN and GMMN (RBFG) fail to converge on 128-D data, owing to vanishing gradients.

Experiments on Gaussian-mixture data: To showcase the instability of f -divergence based GANs
when pt−1 and pd possess non-overlapping supports, we present results on learning Gaussian mixture
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Figure 2: ( Color online) Comparisons between ScoreGAN, FloWGAN and the baselines in terms of
the Wasserstein-2 distanceW2,2(pd, pg) on learning (a) a 2-D; (b) a 16-D; and (c) a 128-D Gaussian.
ScoreGAN and FloWGAN converge an order of magnitude faster than the baseline GANs, while
being on par with Poly-WGAN on 2-D Gaussians. As the data dimensionality increases, ScoreGAN
and FloWGAN outpace Poly-WGAN due to the availability of gradients of larger magnitude. The
baseline SGAN and GMMN (RBFG) fail to converge on 128-D Gaussian data. While ScoreGAN
converges the fastest, its computational load is higher, due to computing the Jacobian of the generator.
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Figure 3: ( Color online) Convergence of the generator samples to the target two-component
Gaussian, pd(x) = 1

5N (−51, I) + 4
5N (51, I). The quiver plot (best seen in the zoomed-in mode

on a .pdf) depicts the gradient field of the discriminator on baseline variants, and the gradient of the
PHS kernel convolved with the density difference in FloWGAN. While SGAN collapses to the more
pronounced mode, ScoreGAN and FloWGAN converges to the target accurately.
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Figure 4: ( Color online) Images generated by decoding latent-space representations learnt by FloW-
GAN generator trained with the polyharmonic-spline kernel. The target latent-space distributions are
obtained from a pre-trained convolutional autoencoder. FloWGAN converges in 103 iterations on
MNIST, and 104 iterations on SVHN and CelebA.

data. Similar empirical observations were made when training WGANs and SGAN on the Dirac
measure (Arjovsky & Bottou, 2017). Here, we present experiments on the two-component Gaussian
mixture originally considered by Song & Ermon (2019): pd(x) = 1

5N (−51, I)+ 4
5N (51, I). Figure 3

provides the generator and data distributions, juxtaposed with the discriminator gradient for a select
few baseline GANs, and the flow field in FloWGAN. Comparisons and ablation experiments are
provided in Appendix E.1. From Figure 3, we observe that, while the IPM-based GANs converge
accurately to the desired target distribution, SGAN misses the less-represented mode located at
µ = −51. This can be explained through Theorem 3.2 – When the generated samples are far from
the data, pd(Gθt(z))→ 0, leading to small gradients induced by the rapid decay of the score.
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Figure 5: ( Color online) (a) Shape morphing using discriminator-guided Langevin sampler. For
relatively simpler input shapes, such as the circular pattern, the sampler converges in about 100
iterations, while in the spiral case, the sampler converges in about 500 steps. (b) Images generated
using the discriminator-guided Langevin sampler on MNIST and Ukiyo-E faces datasets. The score
in standard diffusion models is replaced with the gradient field of the discriminator, obviating the
need for a trainable neural network.

Experiments on Image Data: Although ScoreGANs possess superior convergence, the computational
overhead in evaluating the Jacobian of the generator, and its sensitivity to distribution overlap, make
it an unfavorable choice in practice. FloWGANs scale more favorably to higher-dimensional data.
Therefore, we consider training the FloWGAN generator on the latent-space representation of standard
image datasets. We pre-train an autoencoder on MNIST (LeCun et al., 1998), SVHN (Netzer et al.,
2011), and CelebA (Liu et al., 2015), with 16-, 32- and 63-dimensional latent-space, respectively.
Subsequently, we train the baseline GANs and FloWGAN with the polyharmonic spline (PHS)
kernel to model the latent-space of the data. Figure 4 depicts the images generated by FloWGAN
on various datasets, while additional comparisons provided in Appendix E.2. FloWGAN converges
in 103 iterations on MNIST, and 104 iterations on SVHN and CelebA, and perform on par with
Poly-WGAN.

7.2 Discriminator-guided Langevin Diffusion

To demonstrate the performance of the discriminator-guided Langevin flow, we consider shape
morphing, proposed by Mroueh et al. (2019). The source and target samples are drawn uniformly
from the interior regions of pre-defined shapes. Figure 10(a) depicts two such scenarios, where
the target shape is a heart, and the input shapes are a disk, and a spiral, respectively. Additional
combinations are presented in Appendix F. The discriminator-guided Langevin sampler converges
in about 500 iterations in all the scenarios considered, compared to the 800 iterations reported in
Sobolev descent (Mroueh et al., 2019; Mroueh & Rigotti, 2020), without the need for training a
network to approximate the discriminator kernel.

We extend the proposed approach to images, considering MNIST, SVHN and Ukiyo-E (Pinkney &
Adler, 2020) datasets. Ablation experiments on the choice of αt and γt are provided in Appendix F.
Figure 10(b) presents the samples generated by this discriminator-guided Langevin sampler on
MNIST and 256-dimensional Ukiyo-E faces. The model converges to realistic images in as few
as 300 steps of sampling, resulting in performance comparable to baseline NCSN (Song & Ermon,
2019). Subsequent iterations, akin to NCSN models, serve to clean the noisy images generated.
Additional experiments are provided in Appendix F.

8 Discussions and Conclusion

In this paper, we proposed a novel approach to analyzing the optimal generator in divergence-
minimizing and IPM-based GAN, through the perspective of variational Calculus. While our
analysis covers most popular GAN flavors, the analysis can be extended to any GAN loss function
(cf. Appendix C.3). We derive two core results corresponding to f -GANs and IPM-GANs —
Theorems 3.1 and 3.2 show that in all f -GANs, the generator is a score-matching network. In
IPM-GANs, the GAN generator performs smoothed score matching, with the weight function
corresponding to the kernel associated with the RKHS of the discriminator constraint (Theorem 4.1).
We showed that this is equivalent to minimizing a flow-field induced by the kernel gradient.
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These results deepen our understanding of the optimality in GANs. For examples, the score loss in
f -GANs help explain their poor performance on non-overlapping distributions. The push-pull nature
of the IPM-GAN loss is what allows for avoiding local minima. Beyond explaining the optimality in
existing GANs, we present novel training algorithm based on the score-matching, and flow-based
loss functions (giving rise to ScoreGANs and FloWGANs, respectively), and discriminator-guided
Langevin diffusion. While ScoreGANs suffer from the documented pitfalls of score minimization,
the FloWGAN algorithm can be scaled to learn the latent-space distribution of data. ScoreGANs
and FloWGANs provide a framework for deriving equivalent diffusion models, given a GAN, and
vice versa. An in-depth analysis of discriminator-guided diffusion, cosidering alternative sampling
techniques (Jolicoeur-Martineau et al., 2021; Karras et al., 2022; Rissanen et al., 2023), or latent-space
models (Rombach et al., 2022) is a promising direction for future research.
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Lunz, S., Öktem, O., and Schönlieb, C.-B. Adversarial regularizers in inverse problems. In Advances
in Neural Information Processing Systems, volume 31, 2018.

Lyu, S. Interpretation and generalization of score matching. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, 2009.

Mao, X., Li, Q., Xie, H., Lau, R. Y. K., Wang, Z., and Smolley, S. P. Least squares generative
adversarial networks. In Proceedings of International Conference on Computer Vision, 2017.

Mescheder, L., Geiger, A., and Nowozin, S. Which training methods for GANs do actually con-
verge? In Dy, J. and Krause, A. (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 3481–3490,
Stockholmsmassan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Mroueh, Y. and Nguyen, T. On the convergence of gradient descent in GANs: MMD GAN as a
gradient flow. In Banerjee, A. and Fukumizu, K. (eds.), Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, Apr 2021.

Mroueh, Y. and Rigotti, M. Unbalanced Sobolev descent. In Advances in Neural Information
Processing Systems, volume 33, 2020.

Mroueh, Y., Li, C., Sercu, T., Raj, A., and Cheng, Y. Sobolev GAN. In Proceedings of the 6th
International Conference on Learning Representations, 2018.

Mroueh, Y., Sercu, T., and Raj, A. Sobolev descent. In Proceedings of the Twenty-Second Interna-
tional Conference on Artificial Intelligence and Statistics, Apr 2019.

12

http://arxiv.org/abs/1705.07215
http://jmlr.org/papers/v22/20-911.html


Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. Reading digits in natural images
with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

Nguyen, T., Le, T., Vu, H., and Phung, D. Dual discriminator generative adversarial nets. volume 30,
2017.

Nowozin, S., Cseke, B., and Tomioka, R. f-GAN: Training generative neural samplers using
variational divergence minimization. In Advances in Neural Information Processing Systems 29,
pp. 271–279. 2016.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked autoregressive flow for density estimation.
In Advances in Neural Information Processing Systems 30. 2017.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. Normaliz-
ing flows for probabilistic modeling and inference. Journal of Machine Learning Research, 2021.
URL http://jmlr.org/papers/v22/19-1028.html.

Paszke, A. et al. PyTorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, volume 32, 2019.

Petersen, K. B., Pedersen, M. S., et al. The Matrix Cookbook. Technical University of Denmark, 7
(15):510, 2008.

Petzka, H., Fischer, A., and Lukovnikov, D. On the regularization of Wasserstein GANs. In
Proceedings of the 6th International Conference on Learning Representations, 2018.

Pinetz, T., Soukup, D., and Pock, T. What is optimized in Wasserstein GANs? In Proceedings of the
23rd Computer Vision Winter Workshop, 02 2018.

Pinkney, J. N. M. and Adler, D. Resolution dependent GAN interpolation for controllable image
synthesis between domains. arXiv preprint, arXiv:2010.05334, Oct. 2020. URL https://arxiv.
org/abs/2010.05334.

Radford, A., Metz, L., and Chintala, S. Unsupervised representation learning with deep convolutional
generative adversarial networks. In Proceedings of the 4th International Conference on Learning
Representations, pp. 000–000, 2016.

Rezende, D. J. and Mohamed, S. Variational inference with normalizing flows. In Proceedings of the
32nd International Conference on International Conference on Machine Learning - Volume 37, pp.
15301538, 2015.

Rissanen, S., Heinonen, M., and Solin, A. Generative modelling with inverse heat dissipation.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=4PJUBT9f2Ol.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022.

Sauer, A., Schwarz, K., and Geiger, A. StyleGAN-XL: scaling StyleGAN to large diverse datasets.
volume abs/2201.00273, 2022. URL https://arxiv.org/abs/2201.00273.

Shannon, M., Poole, B., Mariooryad, S., Bagby, T., Battenberg, E., Kao, D., Stanton, D., and
Skerry-Ryan, R. Non-saturating GAN training as divergence minimization. arXiv preprint
arXiv:2010.08029, 2020.

Song, J., Meng, C., and Ermon, S. Denoising diffusion implicit models. In International Con-
ference on Learning Representations, 2021a. URL https://openreview.net/forum?id=
St1giarCHLP.

Song, Y. and Ermon, S. Generative modeling by estimating gradients of the data distribution. In
Advances in Neural Information Processing Systems, 2019.

13

http://jmlr.org/papers/v22/19-1028.html
https://arxiv.org/abs/2010.05334
https://arxiv.org/abs/2010.05334
https://openreview.net/forum?id=4PJUBT9f2Ol
https://openreview.net/forum?id=4PJUBT9f2Ol
https://arxiv.org/abs/2201.00273
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP


Song, Y. and Ermon, S. Improved techniques for training score-based generative models. In Advances
in Neural Information Processing Systems 33, 2020.

Song, Y., Garg, S., Shi, J., and Ermon, S. Sliced score matching: A scalable approach to density and
score estimation. In Proceedings of The 35th Uncertainty in Artificial Intelligence Conference,
volume 115, pp. 574–584, Jul 2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. Score-based
generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021b. URL https://openreview.net/forum?id=PxTIG12RRHS.

Stanczuk, J., Etmann, C., Kreusser, L. M., and Schnlieb, C.-B. Wasserstein GANs work because they
fail (to approximate the Wasserstein distance). arXiv preprint, arXiv:2103.01678, abs/2104.11222,
2021. URL https://arxiv.org/abs/2103.01678.

Su, J. and Wu, G. f-VAEs: Improve VAEs with conditional flows. arXiv preprint, arXiv:1809.05861,
abs/1809.05861, 2018. URL https://arxiv.org/abs/1809.05861.

Tolstikhin, I. O., Bousquet, O., Gelly, S., and Schölkopf, B. Wasserstein auto-encoders. In Proceed-
ings of the 6th International Conference on Learning Representations, 2018.

Uehara, M., Sato, I., Suzuki, M., Nakayama, K., and Matsuo, Y. Generative adversarial nets from
a density ratio estimation perspective. arXiv preprint, arXiv:1610.02920, abs/1610.02920, 2016.
URL https://arxiv.org/abs/1610.02920.

Unterthiner, T., Nessler, B., Seward, C., Klambauer, G., Heusel, M., Ramsauer, H., and Hochreiter, S.
Coulomb GANs: Provably optimal Nash equilibria via potential fields. In Proceedings of the 6th
International Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=SkVqXOxCb.

Xiao, Z., Kreis, K., and Vahdat, A. Tackling the generative learning trilemma with denoising
diffusion GANs. In International Conference on Learning Representations (ICLR), 2022. URL
https://openreview.net/forum?id=JprM0p-q0Co.

Yi, M., Zhu, Z., and Liu, S. Monoflow: Rethinking divergence GANs via the perspective of
differential equations. arXiv preprint, arXiv:2302.01075, abs/2302.01075, 2023. URL https:
//arxiv.org/abs/2302.01075.

Yu, J., Xu, Y., Koh, J. Y., Luong, T., Baid, G., Wang, Z., Vasudevan, V., Ku, A., Yang, Y., Ayan,
B. K., Hutchinson, B., Han, W., Parekh, A., Li, X., Zhang, H., Baldridge, J., and Wu, Y. Scaling
autoregressive models for content-rich text-to-image generation. arXiv preprint, arXiv:2206.10789,
abs/2206.10789, 2022. URL https://arxiv.org/abs/2206.10789.

Zhu, B., Jiao, J., and Tse, D. Deconstructing generative adversarial networks. IEEE Transactions on
Information Theory, 66, 2020.

14

https://openreview.net/forum?id=PxTIG12RRHS
https://arxiv.org/abs/2103.01678
https://arxiv.org/abs/1809.05861
https://arxiv.org/abs/1610.02920
https://openreview.net/forum?id=SkVqXOxCb
https://openreview.net/forum?id=SkVqXOxCb
https://openreview.net/forum?id=JprM0p-q0Co
https://arxiv.org/abs/2302.01075
https://arxiv.org/abs/2302.01075
https://arxiv.org/abs/2206.10789


Appendix
Table of Contents

A Mathematical Preliminaries 16

B An Overview of Related Works 16

C Optimality of Divergence-minimizing GANs 17
C.1 Optimality of SGAN (Proof of Theorem 3.1) . . . . . . . . . . . . . . . . . . . 17
C.2 Optimality of f -GAN (Proof of Theorem 3.2) . . . . . . . . . . . . . . . . . . 18
C.3 Non-divergence-miniming GAN Formulations . . . . . . . . . . . . . . . . . . 20
C.4 Computing the Score of the Generator (Proof of Lemma 6.1) . . . . . . . . . . . 21
C.5 ScoreGANs with Rectangular Jacobian Matrices . . . . . . . . . . . . . . . . . 22

D Optimality of IPM-based GANs 23
D.1 Optimality of Kernel-based IPM-GANs (Proofs of Theorem 4.1 and Lemma 4.2) 23
D.2 Sample Estimate of the FloWGAN Cost (Proof of Lemma 6.2) . . . . . . . . . . 25
D.3 Convergence of Discriminator-guided Langevin Diffusion . . . . . . . . . . . . 26

E Additional Experimentation on Score- and Flow-matching GANs 27
E.1 Additional Experimental Results on Gaussian Learning . . . . . . . . . . . . . . 27
E.2 Additional Experimental Results on Image Learning . . . . . . . . . . . . . . . 27
E.3 Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

F Additional Experimentation on Discriminator-guided Langevin Sampling 31
F.1 Additional Experimental Results on Synthetic Data Learning . . . . . . . . . . . 31
F.2 Additional Experimental Results on Image Learning . . . . . . . . . . . . . . . 32

G Computational Resources 42

H Source Code and Animations 42

Overview of Supporting Documents

The Supporting Documents of this manuscript comprise the appendices, animations pertaining to
various experiments presented, and the source code for ScoreGANs and FloWGANs. The appendices
present relevant mathematical frameworks used in the proofs, the proofs of the theorems stated in the
Main Manuscript and results of ablation experimentation on synthetic Gaussians and image learning
tasks.

15



A Mathematical Preliminaries

Consider a vector z = [z1, z2, . . . , zn]T ∈ Rn and the generator G : Rn → Rn, i.e,., G(z) =
[G1(z), G2(z), . . . , Gn(z)]. The notation ∇zG(z) represents the gradient matrix associated with
the generator, with entries consisting of the partial derivatives of the entries of G with respect to the
entries of z:

∇zG(z) =


∂G1

∂z1
∂G2

∂z1
. . . ∂Gn

∂z1
∂G1

∂z2
∂G2

∂z2
. . . ∂Gn

∂z2

...
...

. . .
...

∂G1

∂zn
∂G2

∂zn
. . . ∂Gn

∂zn

 .
The Jacobian J can be thought of as measuring the transformation that the function imposes locally
near the point of evaluation, and is is defined to be the transpose of the gradient, i.e., ∇zG(z) =
JT
G(z).

Calculus of Variations: Our analysis centers around deriving the optimal generator in the functional
sense, leveraging the Fundamental Lemma of the Calculus of Variations (Goldstine, 1980; Ferguson,
2004). Consider an integral cost L, to be optimized over a function h:

L (h, h′) =

∫
X

F (x, h(x), h′(x)) dx , (13)

where h is assumed to be continuously differentiable or at least possess a piecewise-smooth derivative
h′(x) for all x ∈ X . If h∗(x) denotes the optimum, The first variation of L, evaluated at h∗,
is defined as the derivative δL(h∗; η) = ∂Lε(h∗)

∂ε evaluated at ε = 0, where Lε(h∗) denotes an
ε-perturbation of the argument h about the optimum h∗, given by

Lh,ε(ε) = L (h∗(x) + ε η(x), h∗′(x) + ε η′(x))

where, in turn, η(x) is a family of perturbations that are compactly supported, infinitely differentiable
functions, and vanishing on the boundary of X . Then, the optimizer of the cost L satisfies the
following first-order condition:

∂Lh,ε(ε)
∂ε

∣∣∣∣
ε=0

= 0

Another core concept in deriving functional optima is the Fundamental Lemma of Calculus of
Variations, which states that, if a function g(x) satisfies the condition∫

X
g(x) η(x) dx = 0

for all compactly supported, infinitely differentiable functions η(x), then g must be identically zero
almost everywhere in X . Together, these results are used to derive the condition that the optimal
generator transformation satisfies, within various GAN formulations.

B An Overview of Related Works

Links between diffusion and flows can be traced back to the work of Jordan et al. (1998), where the
Fokker-Planck equation was shown to lead to a Kullback-Leibler (KL) flow, discretized to give rise to
the Langevin Monte Carlo algorithm. However, an analysis under KL flow or Stein flow (Liu, 2017)
for GANs is infeasible, as this requires the analytical form of the target density. Recently, Gong
& Li (2021) showed that diffusion score matching can be interpreted as normalizing flows. Our
results, in a similar vein, link GAN generator optimization to both flows, and score matching. Mroueh
& Nguyen (2021) leverage MMD flow (Arbel et al., 2019) to analyze the convergence in MMD-
GANs. Recently, Kwon et al. (2022) showed that the score-matching networks in fact solve for the
Wasserstein flow between pd and pg .

The closest approach to ours is that of MonoFlow, proposed by Yi et al. (2023), who showed that the
divergence-minimizing discriminator can be seen as approximating the vector field of a gradient flow
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in the Wasserstein space, induced by a monotonically increasing function of the density ratio. Our
results can be seen as a generalization of those considered in MonoFlow, relating both divergence-
minimizing, and IPM-based GANs. Liang (2021) optimize IPM-based generator and discriminator
networks jointly, and show that additional regularization on the space of the generator functions
is necessary in IPM GANs to attain the optimum. Franceschi et al. (2022) propose NTK-GANs, a
unifying theory for the optimality of GANs considering neural-network discriminators, and show that
the generator in and GAN can be seen as minimizing a cost related to the NTK associated with an
infinite-width discriminator.

C Optimality of Divergence-minimizing GANs

We now present the proofs for the optimality conditions derived for the divergence minimizing GANs.
We also consider an extension, pertaining to a GAN variant that does not directly correspond to the
f -divergence, the LSGAN formulation with arbitrarily chosen class labels.

C.1 Optimality of SGAN (Proof of Theorem 3.1)

Recall the SGAN generator optimization problem:

LSG(G; D∗t , Gt−1) = E
x∼pd

[ln(D∗t (x))] + E
z∼pz

[ln(1−D∗t (G(z)))]

G∗t (x) = arg min
G

{
LSG(G; D∗t , Gt−1)

}
, where D∗t (x) =

pd(x)

pt−1(x) + pd(x)
.

The optimal discriminator was originally derived through a point-wise optimization by Goodfellow
et al. (2014), but later shown to be consistent with the functional form of optimization by Asokan &
Seelamantula (2023a). Since the expectation with respect to the data term in LSG does not involve
the generator samples at the current iteration t, it can be ignored with respect to the optimization. A
similar approach was considered by Franceschi et al. (2022) in analyzing the NTK-GAN formulation.
Expanding the integral, and substitute in for the optimal discriminator D∗t yields:

LSG(G) =

∫
Z

ln

(
pt−1(G(z))

pt−1(G(z)) + pd(G(z))

)
pz(z) dz,

where Z denotes the support of the input distribution pz . The optimization of LSG is a functional
one, and can be found by computing the first variation, and setting it to zero under the Fundamental
Lemma of Calculus of Variations. Let the optimal solution be denoted by

G∗t (z) = [G1∗

t (z), G2∗

t (z), . . . , Gi
∗

t (z), . . . , Gn
∗

t (z)]T,

where Gi
∗

t denotes the optimum along the ith dimension. Let LG,i,ε be the loss considering an
epsilon perturbation of the ith entry about the optimum, given by:

G∗t,i,ε(z) = [G1∗

t (z), G2∗

t (z), . . . , Gi
∗

t (z) + εη(z), . . . , Gn
∗

t (z)]T,

where η(z) is drawn from a family of compactly supported, infinitely differentiable functions. The
loss can now be written as a function of ε as:

LSG,i,ε(ε) =

∫
Z

ln

(
pt−1

(
G∗t,i,ε(z)

)
pt−1

(
G∗t,i,ε(z)

)
+ pd

(
G∗t,i,ε(z)

)) pz(z) dz,

Differentiating LG,i,ε with respect to epsilon and equating it to zero at ε = 0 yields:

∂LSG,i,ε(ε)
∂ε

∣∣∣∣
ε=0

=

∫
Z

(
pt−1

(
G∗t,i,ε(z)

)
+ pd

(
G∗t,i,ε(z)

)
pt−1

(
G∗t,i,ε(z)

) ) ∣∣∣∣∣
ε=0

·

∂

∂ε

(
pt−1

(
G∗t,i,ε(z)

)
pt−1

(
G∗t,i,ε(z)

)
+ pd

(
G∗t,i,ε(z)

))︸ ︷︷ ︸
T1

pz(z) dz

= 0.
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Table 1: Various f -GANs (Nowozin et al., 2016), given the activation function g and the Fenchel
conjugate f c. The corresponding optimal discriminator D∗t (x), derived via pointwise optimization,
and the corresponding coefficient function C .

f -divergence g(D) fc(T ) D∗
t (ln(rt−1)) C (x; pd, pt−1)

Kullback-Leibler (KL) D eT−1 1 + ln (rt−1(x)) rt−1(x)

Reverse KL −e−D −1−ln(−T ) ln (rt−1(x)) 1

Pearson-χ2
D 1

4T
2 + T 2 (rt−1(x)− 1) 2r2t−1(x)

Squared-Hellinger 1− e−D T
1−T

1
2 ln (rt−1(x))

1
2

√
rt−1(x)

SGAN − ln
(
1 + e−D

)
− ln

(
1− eT

)
ln (rt−1(x)) r2t−1(x) (rt−1(x) + 1)−1

Let x = G∗t,i,ε(z)
∣∣
ε=0

= G∗t (z). The term T1 can be simplified as:

T1 =

pd(G∗t,i,ε(z))∂pt−1(y)
∂yi

∣∣
y=G∗

t,i,ε(z)
− pt−1(G∗t,i,ε(z))∂pd(y)∂yi

∣∣
y=G∗

t,i,ε(z)(
pd(G∗t,i,ε(z)) + pt−1(G∗t,i,ε(z))

)2
∣∣∣∣∣

ε=0

η(z)

=

(
pd(x)∂pt−1(x)

∂xi
− pt−1(x)∂pd(x)∂xi

(pd(x) + pt−1(x))
2

)
η(z).

Substituting back for T1 in
∂LSG,i,ε(ε)

∂ε and simplifying yields:

∂LSG,i,ε(ε)
∂ε

∣∣∣∣
ε=0

=

∫
Z
pz(z)

(
pd(x)p′t−1,i(x)− pt−1(x)p′d,i(x)

pt−1(x) (pd(x) + pt−1(x))

)
η(z)

∣∣∣∣∣
x=G∗

t (z)

= 0,

where p′t−1,i and p′d,i denote the derivative of pt−1 and pd, respectively, with respect to xi, the ith

entry of the argument x. Then, from the Fundamental Lemma of the Calculus of Variations, we have:

pz(z)

(
pd(x)p′t−1,i(x)− pt−1(x)p′d,i(x)

pt−1(x) (pd(x) + pt−1(x))

) ∣∣∣∣∣
x=G∗

t (z)

= 0, ∀ z ∈ Z.

Since pz(z) is non-zero over its support Z , and if pt−1(x) 6= 0 for all x = G∗t (z) (which is a
reasonable assumption to make, since pt−1 is the push-forward distribution of the generator), the
optimality condition becomes:

pd(x)p′t−1,i(x)− pt−1(x)p′d,i(x)

∣∣∣∣
x=G∗

t (z)

= 0, ∀ z ∈ Z.

Rearranging and simplifying yields:

∂ ln pt−1(x)

∂xi

∣∣∣∣
x=G∗

t (z)

=
∂ ln pd(x)

∂xi

∣∣∣∣
x=G∗

t (z)

, ∀ z ∈ Z.

Since the analysis holds identically for all i, we have:

∇x ln (pt−1(x))
∣∣
x=G∗

t (z)
= ∇x ln (pd(x))

∣∣
x=G∗

t (z)
, ∀ z ∈ Z.

which is the desired result of Theorem 3.1.

C.2 Optimality of f -GAN (Proof of Theorem 3.2)

We now derive the optimality condition for f -GANs in general, and subsequently analyze each
variant considered by Nowozin et al. (2016) (cf. Table 1). Recall the f -GAN optimization:

LfD(D; Gt−1) = − E
x∼pd

[T (x)] + E
x∼pt−1

[f c(T (x))]

LfG(G;D∗t , Gt−1) = E
x∼pd

[T ∗(x)]− E
x∼pt−1

[f c(T ∗(x))] ,
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where T (·) = g(D(·)) is the output of the discriminator D ∈ R, restricted to a desired domain by
mean of an activation function g(·), f c denotes the Fenchel conjugate of f , and T ∗(·) = g(D∗(·)).
The discriminator optimization in f -GANs has been well studied by Nowozin et al. (2016); Asokan &
Seelamantula (2023a) and Yi et al. (2023). For completeness, we summarize the result here. Consider
the integral form of the discriminator cost:

LfD(D; Gt−1) =

∫
X
f c(T (x)) pt−1(x)− T (x) pd(x)︸ ︷︷ ︸

FD

dx

The integrand F can be optimized pointwise with respect to T , to derive the optimality condition for
the discriminator:

∂fc(T )

∂T

∣∣∣∣∣
T=T∗(x)

=
pd(x)

pt−1(x)
= rt−1(x), where T ∗(x) = g(D∗(x)). (14)

The above can be solved for various choices of g(·) and f c(·), giving rise to the optimal discriminator
D∗t (x) in f -GANs. For convenience, we recall the results in Table 1 of the Appendix. Since the
optimal discriminator is always a function of the logarithm of the density ratio, we denote the solution
as D∗t (ln(rt−1)).

Consider the f -GAN generator optimization, givenD∗t . As in the SGAN case, only the term involving
the generator samples affects the optimization. The integral form of the loss is given by:

LfG(G) =

∫
Z
f c(T ∗(G(z))) pz(z) dz

⇒ LfG,i,ε(ε) =

∫
Z
f c(T ∗(G∗t,i,ε(z))) pz(z) dz,

where the perturbed loss LfG,i,ε is defined as in the case of SGANs (cf. Appendix C.1). Leveraging
the chain rule and computing the derivative with respect to ε yields:

∂LfG,i,ε(ε)
∂ε

∣∣∣∣
ε=0

=

∫
Z

∂fc

∂T

∣∣∣∣∣
T=T∗(G∗

t,i,ε)

∂T ∗

∂D

∣∣∣∣∣
D=D∗

t (ln rt−1)

·

∂D∗t
∂y

∣∣∣∣∣
y=ln rt−1(G∗

t,i,ε)

∂

∂ε

(
ln
(
rt−1(G∗t,i,ε)(z)

))
pz(z)

∣∣∣∣∣
ε=0

dz.

From the optimality condition given in Equation (14), and relations in Table 1, we have:

∂LfG,i,ε(ε)
∂ε

∣∣∣∣
ε=0

=

∫
Z
rt−1(x)g′ (D∗t (ln rt−1(x)))

∂D∗t
∂y

∣∣∣∣∣
y=ln rt−1

·

∂

∂xi
(ln(rt−1(x)))

∣∣∣∣∣
x=G∗

t (z)

∂G∗t,i,ε
∂ε

pz(z) dz

=

∫
Z
rt−1(x)g′ (D∗t (ln rt−1(x)))D∗′t (y)

∣∣
y=ln rt−1︸ ︷︷ ︸

C (x; pd, pt−1)

·

∂

∂xi
(ln(rt−1(x)))

∣∣∣∣∣
x=G∗

t (z)

η(z) pz(z) dz = 0,

where g′(t) denotes the derivatives of the activation function with respect to D evaluated at D∗t , and
D∗′t (y) denotes the derivative of the optimal discriminator function with respect to y = ln(rt−1(x)),
evaluated at ln(rt−1(x)). As in the case of SGANs, from the Fundamental Lemma of Calculus of
Variations, we have:

C (x; pd, pt−1)
∂

∂xi
(ln(rt−1(x)))

∣∣∣∣∣
x=G∗

t (z)

= 0, ∀ z ∈ Z.
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The above can be vectorized over all i, giving rise to the result provided in Theorem 3.2:

C (x; pd, pt−1)∇x (ln rt−1(x))

∣∣∣∣
x=G∗

t (z)

= 0, ∀ z ∈ Z.

The coefficient C (x; pd, pt−1) can be derived for each f -GAN (given in Table 1), we discuss the
results here.

KL divergence: Consider the f -GAN with the Kullback-Leibler divergence. We have g′(D∗t ) = 1
and D∗′t (x) = 1, which gives us C (x; pd, pt−1) = rt−1(x). Recall that the density ratio is given by
rt−1(G∗t (z)) =

pd(G
∗
t (z))

pt−1(G∗
t (z))

. Since pt−1 denotes the push-forward distribution of the generator of the
previous iteration, for sufficiently small learning rates, the generator samples at time t are sufficiently
close to those at t− 1, and pt−1(G∗t (z)) is non-zero. However, if the generated samples are far from
the data density, pd(G∗t (z)) is close to zero, resulting in vanishing gradients while training — Even
if the scores do not match, the training loss is zero, as pd(Gθt(z))→ 0.

Reverse-KL (RKL) divergence: For the reverse-KL-based f -GAN, we have g′(D∗t ) = r−1t−1(x) and
D∗′t (x) = 1. As a consequence, the coefficient C (x; pd, pt−1) is unity. Therefore, when trained
with the RKL loss, it is clear that the generator would not suffer from vanishing gradients. This
observation is consistent with the literature, as Nguyen et al. (2017) and Shannon et al. (2020) have
both observed that the non-saturating GAN loss can be seen as a smoothened RKL loss.

Pearson-χ2 divergence: The Pearson-χ2 GAN can be seen as a special case of LSGAN. Here,
we have g′(D∗t ) = 1 and D∗′t (x) = rt−1(x). The coefficient C (x; pd, pt−1) = r2t−1(x) grows
quadratically in pd, resulting in vanishing gradients in a more pronounced manner than in KL-GANs.
We discuss the effect of choosing alternative class labels in LSGAN, those that do not lead to the
Pearson-χ2 GAN, in Appendix C.3.

Squared-Hellinger divergence: In the Squared-Hellinger GAN formulation, we have g′(D∗t ) =

r
− 1

2
t−1(x) and D∗′t (x) = 1

2 , which yields C (x; pd, pt−1) = 1
2r

1
2
t−1(x). As the coefficient only

decays as the square-root of pd, we expect that the Squared-Hellinger GAN is relatively more
stable, compared to the Pearson-χ2-divergence based counterpart. This was observed empirically
by Nowozin et al. (2016).

C.3 Non-divergence-miniming GAN Formulations

In this section, we consider an example GAN formulation that does not lie within the divergence
minimization framework. The results serve to show that the proposed approach can by applied to any
existing GAN variant.

Least-squares GAN: Consider the LSGAN formulation presented by Mao et al. (2017) with the
discriminator and generator loss given by:

LLSD (D; Gt−1) = E
x∼pd

[
(D(x)− b)2

]
+ E

x∼pt−1

[
(D(x)− a)2

]
and

LLSG (G; D∗t , Gt−1) = E
x∼pd

[
(D∗t (x)− c)2

]
+ E

z∼pz

[
(D∗t (G(z))− c)2

]
,

respectively, where a and b are the class-labels assigned by the discriminator to real and fake samples,
respectively. The generator is trained to create samples such that they are classified as c by the
discriminator. The discriminator optimization can be carried out pointwise, giving rise to the optimal
discriminator:

D∗t (x) =
apt−1(x) + bpd(x)

pt−1(x) + pd(x)
. (15)
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As in the case of SGANs, the generator loss can be expanded into the integral form, and evaluated at
perturbed location about the optimal solution G∗t,i,ε, which yields:

LLSG,i,ε(ε) =

∫
Z

(
D∗t (G∗t,i,ε(z))− c

)2
pz(z) dz

⇒
∂LLSG,i,ε(ε)

∂ε

∣∣∣∣
ε=0

=

∫
Z

2
(
D∗t (G∗t,i,ε(z))− c

) ∣∣∣∣
ε=0

∂D∗t (G∗t,i,ε(z))

∂ε

∣∣∣∣
ε=0

pz(z) dz

=

∫
Z

2 (D∗t (x)− c)
∣∣∣∣
x=G∗

t (z)

∂D∗t (x)

∂xi

∣∣∣∣
x=G∗

t,i,ε(z)

η(z)pz(z) dz = 0 (16)

Given the optimal LSGAN discriminator in Equation (15), we have:

(D∗t (x)− c) =
(a− c)pt−1(x) + (b− c)pd(x)

pt−1(x) + pd(x)
and

∂D∗t (x)

∂xi
=

(b− a)
(
pd(x)p′t−1,i(x)− pt−1(x)p′d,i(x)

)
(pt−1(x) + pd(x))2

Substituting for the above into Equation (16) yields:∫
Z

(b− a) ((a− c)pt−1(x) + (b− c)pd(x))

(pt−1(x) + pd(x))
3︸ ︷︷ ︸

C(x; pt−1,pd,a,b,c)

·

(
pd(x)p′t−1,i(x)− pt−1(x)p′d,i(x)

) ∣∣∣∣
x=G∗

t,i,ε(z)

η(z)pz(z) dz = 0,

where C(x; pt−1, pd, a, b, c) is the coefficient term, similar to the one seen in the f -GAN formulation,
that also depends on the choice of class-labels (a, b, c). From the Fundamental Lemma of Calculus of
Variations, we have:

C(x; pt−1, pd, a, b, c)
(
pd(x) p′t−1,i(x)− pt−1(x) p′d,i(x)

) ∣∣∣∣
x=G∗

t,i,ε(z)

= 0,

As in the case of f -GANs, we see that the least-squares GAN also results in a score-matching loss,
when C(x; pt−1, pd, a, b, c) is non-zero. Mao et al. (2017) propose two choices of class labels – (i)
(a, b, c) = (−1, 0, 1), which satisfy the conditions that b− c = 1 and a− c = −1, resulting in the
Pearson-χ2 divergence-based GANs; and (2) (a, b, c) = (0, 1, 1), which leads to stabler training.
From the solution above, we see that,

When (a, b, c) = (−1, 0, 1), we have C(x; pt−1, pd, a, b, c) =
1

(pt−1(x)− pd(x))2
, and

When (a, b, c) = (0, 1, 1), we have C(x; pt−1, pd, a, b, c) =
−pt−1(x)

(pt−1(x)− pd(x))3
.

For either case, for sufficiently small learning rates, the updated sample x = G∗t (z) is sufficiently
close to the sample generated at the previous iteration, and we have pt−1(x) > 0. As a result, we see
that even when the loss does not correspond to a divergence minimizing cost, the class label (a, b, c)
can be chosen such that the LSGAN generator optimization results in a score-matching cost.

C.4 Computing the Score of the Generator (Proof of Lemma 6.1)

Consider the push-forward generator distribution at time t, given by pt(x) = Gθt,#(pz), where
pz = N (z;µz,Σz). We assume that the generator Gθt : Rn → Rn is an invertible function, with the
inverse given by G−1θt . Then, by the change-of-variables formula, we have:

pt(x) = pz(G
−1
θt

(x))
∣∣∣det JG−1

θt

(x)
∣∣∣ .
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If the generator is invertible, we have,

pt(x) = pz(G
−1
θt

(x))
∣∣∣det J−1Gθt

(G−1θt (x))
∣∣∣ = pz(G

−1
θt

(x))
∣∣det JGθt (G

−1
θt

(x))
∣∣−1 .

Then, the score of the generator is given by:

∇x ln (pt(x)) = ∇x ln
(
pz(G

−1
θt

(x))
∣∣det JGθt (G

−1
θt

(x))
∣∣−1)

= ∇x

(
ln
(
pz(G

−1
θt

(x))
)
− ln

∣∣det JGθt (G
−1
θt

(x))
∣∣)

Then, given the transformation x = Gθt(z), we have

∇x ln (pt(x)) = J−TGθt
(z)
(
∇z

(
ln (pz(z))− ln

∣∣det JGθt (z)
∣∣))

In most GAN frameworks, pz is set to be the standard Gaussian N (z; 0, I. Simplifying for the score
of the Gaussian, we get

∇x ln (pt(x)) = J−TGθt
(z)

(
− z −∇z ln

∣∣det JGθt (z)
∣∣︸ ︷︷ ︸

T1

)
,

which is the desired result of Lemma 6.1. In practice, the Jacobian of the generator can be computed
using automatic differentiation in standard libraries such as TensorFlow (Abadi et al., 2016) or
PyTorch (Paszke et al., 2019). The term T1 can further be simplified though well-known matrix
differentiation properties. Consider the following:

T1 = ∇z ln
∣∣det JGθt (z)

∣∣
= ∇zJGθt ⊗∇JGθt

ln
∣∣det JGθt (z)

∣∣ ,
where ∇zJGθt denotes a Hessian tensor in Rn×n×d, with the (i, j, k)th entry given by[
∇zJGθt

]
i,j,k

=
∂[JGθt

]i,j

∂zk
. Applying the matrix identity ∇M ln |detM | = M−T (Petersen

et al., 2008) yields:

T1 =
(
∇zJGθt ⊗ J−TGθt

)
(z),

with entries given by [T1]i =
∑
j,k

[
∇zJGθt

]
i,j,k
·
[
J−TGθt

]
j,k

; i = 1, 2, . . . , d,

where the Hessian tensor can be computed either through automatic differential, or approximated by
the Jacobian outer product.

C.5 ScoreGANs with Rectangular Jacobian Matrices

We now extend the results of Appendix C.4 to the scenario when Gθt : Rd → Rn; d � n. Papa-
makarios et al. (2021) showed that when the data x ∈ Rn is assumed to lie in a low, d-dimensional
manifold by means of the mapping (Gθt), we can define the metric M(z) induced on the space X as:

M(z) = JT
Gθt

(z)JGθt (z).

Then, the change-of-variables formula for the transformation of random variables with measures
defined over X is:

pt(x) = pz(G
−1
θt

(x))
(
det M(G−1θt (x))

)− 1
2 .

An analysis similar to the one provided in Appendix C.4 can now be applied to derive the following
approximation:

∇x ln (pt(x)) ≈ J†
T

Gθt
(z)

(
− z − 1

2
∇z ln det

(
JT
Gθt

JGθt

)
︸ ︷︷ ︸

T1

)
,
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where J†Gθt
denotes the pseudoinverse of the Jacobian matrix. Further, simplifying T1 using the

standard matrix identity∇A ln |detATA| = 2A†
T

(Petersen et al., 2008) yields

T1 = ∇zJGθt (z)⊗ J†
T

Gθt
(z),

with entries given by [T1]i =
∑
j,k

[
∇zJGθt

]
i,j,k
·
[
J†

T

Gθt

]
j,k

; i = 1, 2, . . . , d.

While the above result provides a closed-form approximation to the generator density in the most
general sense, additional constrained can be enforced on the generator network architecture, as in the
case of normalizing flows (Papamakarios et al., 2021) to further simplify computation.

D Optimality of IPM-based GANs

We now derive the IPM GAN counterparts to the proofs presented in Appendix C

D.1 Optimality of Kernel-based IPM-GANs (Proofs of Theorem 4.1 and Lemma 4.2)

Mroueh et al. (2018), in the context of SobolevGAN, showed that IPM-GANs with a gradient-based
constraint defined with respect to a base density µ(x) results in the optimal discriminator solving the
Fokker-Planck partial differential equation (PDE), given by:

div. (µ ∇D)
∣∣
D=D∗

t (x)
= c (pd(x)− pt−1(x)) ,

where div denotes the divergence operator and c is some constant. For the particular case when the
base measure is the uniform, Asokan & Seelamantula (2023a) showed that the PDE simplifies to a
Poisson equation, while in the case of higher-order gradient penalties (Adler & Lunz, 2018; Asokan
& Seelamantula, 2023b), the optimal discriminator solves an iterated Laplacian, and can be seen
as a generalization of SobolevGAN. The optimal discriminator that satisfies the iterated-Laplacian
operator was shown to be (Asokan & Seelamantula, 2023b):

D∗t (x) = Cκ ((pt−1 − pd) ∗ κ) (x)

where Cκ = (−1)m+1%
2λ and % are positive constants, and the kernel κ is the Green’s function associated

with the differential operator. In Poly-WGAN, the kernel corresponds to the family of polyharmonic
splines, given by

κ(x) =

{‖x‖k if k < 0 or n is odd,
‖x‖k ln(‖x‖) if k ≥ 0 and n is even,

where in turn, k = 2m − n. The above was also shown to be an mth-order generalization to
the Plummer kernel considered in Coulomb GANs (Unterthiner et al., 2018). Given the optimal
discriminator, consider the generator optimization. As always, only the terms involving G(z)
influence the alternating optimization in practice, and the other terms can be ignored. Then, the cost
is given by:

LκG(G;D∗t , Gt−1) = − E
z∼pz

[D∗t (G(z))] = −
∫
Z
D∗t (G(z)) pz(z) dz

As in the case of f -GANs, we consider the perturbed optimal generator G∗t,i,ε(z), and the correspond-
ing cost LG,i,ε(ε). Substituting in for D∗t and expanding the convolution integral yields:

LκG,i,ε(ε) = −
∫
Z
Cκ pz(z)

∫
Y

(
pt−1(G∗t,i,ε(z)− y)− pd(G∗t,i,ε(z)− y)

)
κ(y) dy dz, (17)

where Y can be viewed as the union of the supports of pd and pt−1 when overlapping, and the
convex hull of their supports when non-overlapping. Differentiating the above with respect to ε and
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evaluating at ε = 0 gives:

∂LκG,i,ε(ε)
∂ε

∣∣∣∣∣
ε=0

= −
∫
Z
Cκ pz(z)

∫
Y

(pt−1(y)− pd(y))
∂κ(G∗t,i,ε(z)− y)

∂ε

∣∣∣∣∣
ε=0

dy dz

= −
∫
Z
Cκ pz(z)

∫
Y

(pt−1(y)− pd(y))
∂κ(w)

∂xi

∣∣∣∣∣
w=G∗

t (z)−y

∂[G∗t,i,ε(z)]i

∂ε
dy dz

= −
∫
Z
Cκ pz(z)

∫
Y

(pt−1(y)− pd(y))
∂κ(w)

∂wi

∣∣∣∣∣
w=G∗

t (z)−y

η(z) dy dz = 0.

The inner integral once again represents a convolution, given by

∂LκG,i,ε(ε)
∂ε

∣∣∣∣∣
ε=0

= −Cκ
∫
Z

((pt−1 − pd) ∗ κ′i) (x)

∣∣∣∣
x=G∗

t (z)

pz(z)η(z) dz = 0,

where κ′i is the derivative of the kernel κ with respect to its ith entry. From the Fundamental Lemma
of Calculus of Variations, we have

Cκ ((pt−1 − pd) ∗ κ′i) (x)

∣∣∣∣
x=G∗

t (z)

= 0, ∀ z ∈ Z. (18)

Since the above holds for all i, the above can be written mode compactly as

Cκ ((pt−1 − pd) ∗ ∇xκ) (x)

∣∣∣∣
x=G∗

t (z)

= 0, ∀ z ∈ Z,

where the convolution between a scalar- and vector-valued function must be interpreted element-wise
with respect to the vector. This completes the proof for Lemma 4.2. Table 2 lists a few common
kernels used across GAN variants, and their corresponding gradient vectors.

Proof of Theorem 4.1: An alternative approach to solving the aforementioned optimization, is to
leverage the properties of convolution in Equation (18). Consider the convolution integral:

((pt−1 − pd) ∗ κ′i) (w) =

∫
Y

(pt−1(y)− pd(y))
∂κ(w)

∂wi
dy

∣∣∣∣∣
w=G∗

t (z)−y

=
∂

∂wi

(∫
Y

(pt−1(y)− pd(y))κ(w) dy

) ∣∣∣∣∣
w=G∗

t (z)−y

= 0,∀ z ∈ Z.

From the property of convolutions, we have:

((pt−1 − pd) ∗ κ′i) (w) =
∂

∂wi

(∫
Y

(pt−1(w)− pd(w))κ(y) dy

) ∣∣∣∣∣
w=G∗

t (z)−y

=

(∫
Y

(
∂pt−1(w)

∂wi
− ∂pd(w)

∂wi

)
κ(y) dy

) ∣∣∣∣∣
w=G∗

t (z)−y

= 0,∀ z ∈ Z.

Using the identity
∂p(w)

∂wi
= p(w)

∂ ln (p(w))

∂wi
, we obtain:

((pt−1 − pd) ∗ κ′i) (w) =

(∫
Y

(
∂pt−1(w)

∂wi
− ∂pd(w)

∂wi

)
κ(y) dy

) ∣∣∣∣∣
w=G∗

t (z)−y

=

(∫
Y

(
pt−1(y)

∂ ln(pt−1(y))

∂yi
− pd(y)

∂ ln(pd(y))

∂yi

)
κ(x− y) dy

)
= 0,

for all z ∈ Z and x = G∗t (z). Rewriting the integrals as expectations yields

E
y∼pt−1

[
∂ ln(pt−1(y))

∂yi
κ(G∗t (z)− y)

]
− E

y∼pd

[
∂ ln(pd(y))

∂yi
κ(G∗t (z)− y)

]
= 0, ∀ z ∈ Z.
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Table 2: Standard kernels considered in the GAN literature, and their associated gradient fields. While
the kernels decay to zero either exponentially, or in polynomial time, the gradient fields induced
by them are relatively more stable, owing to the conditioning by x. As a result the FloWGAN
approaches are stable even in high-dimensional cases, unlike their base-kernel counterparts.

Kernel κ(x) Gradient∇xκ(x)

Radial basis function Gaussian (RBFG) (σ > 0) exp
(
− 1
σ2 ‖x‖2

)
− 1
σ2 x exp

(
− 1
σ2 ‖x‖2

)
Mixture of Gaussians (MoG)

(
{σi > 0}`i=1

) ∑
σi

exp

(
− 1
σ2
t
‖x‖2

)
−x

(∑
σi

1
σ2
i

exp

(
− 1
σ2
i

‖x‖2
))

Inverse multi-quadric (IMQ) (c > 0) (‖x‖2 + c)−
1
2 − 1

2
x (‖x‖2 + c)−

3
2

Polyharmonic spline (PHS) (k < 0 or n is odd) ‖x‖k (k − 2)x‖x‖k−2

Polyharmonic spline (PHS) (k ≥ 0 and n is even) ‖x‖k ln(‖x‖) x‖x‖k−2 ((k − 2) ln(‖x‖) + 1)

Stacking the above, for all i, as a vector, we obtain:

E
y∼pt−1

[∇y ln(pt−1(y))κ(G∗t (z)− y)]− E
y∼pd

[∇y ln(pd(y))κ(G∗t (z)− y)] = 0, ∀ z ∈ Z.

This completes the proof of Theorem 4.1.

Explaining Denoising Diffusion GANs: To derive a general solution to IPM-GANs (both network-
based, or otherwise), consider the discriminator given at iteration t, Dt(x). Then, the generator
optimization is given by:

LIPMG (G;Dt, Gt−1) = − E
z∼pz

[Dt (G(z))] = −
∫
Z
Dt(G(z)) pz(z) dz

The loss defined about the perturbed optimal generator is then given by:

LIPMG,i,ε (ε) = −
∫
Z
Dt(G

∗
t,i,ε(z)) dz

⇒
∂LIPMG,i,ε (ε)

∂ε

∣∣∣∣∣
ε=0

=

∫
Z

∂Dt(x)

∂xi

∣∣∣∣
x=G∗

t (z)

pz(z)η(z) dz = 0.

A similar approach, as in the case of kernel-based IPM-GANs, to simplifying the above for all i,
results in the following optimality condition:

∇xDt(x)
∣∣
x=G∗

t (z)
= 0, ∀ z ∈ pz.

While the above condition appears trivial in the context of gradient-descent-based training of GANs
(as the condition derived is essentially one of gradient descent over the discriminator), it can be
used to explain the optimality of GAN based diffusion models such as Denoising Diffusion GANs
(DDGAN, Xiao et al. (2022)). In DDGAN, a GAN is trained to approximate the reverse diffusion
process, with time-embedding-conditioned discriminator and generator networks. While the approach
results in superior sampling speeds as one only needs to sample from the sequence of generators, the
underlying transformations that the generated images undergo, can be seen as the flow through the
gradient field of the time-dependent discriminator as obtained above.

D.2 Sample Estimate of the FloWGAN Cost (Proof of Lemma 6.2)

The proof follows closely, the approach used in Asokan & Seelamantula (2023b). Consider the
optimality condition in FloWGAN along a give dimension i. We have:

Cκ ((pt−1 − pd) ∗ κ′i) (x)

∣∣∣∣
x=G∗

t (z)

= 0, ∀ z ∈ Z.

25



Expanding the convolution integral yields

Cκ

∫
Y

(pt−1(y)− pd(y))κ′i(G
∗
t (z)− y) dy = 0, ∀ z ∈ Z

⇒
∫
Y
pt−1(y)κ′i(G

∗
t (z)− y) dy −

∫
Y
pd(y)κ′i(G

∗
t (z)− y) dy = 0, ∀ z ∈ Z

⇒ E
y∼pt−1

[κ′i(G
∗
t (z)− y)]− E

y∼pd
[κ′i(G

∗
t (z)− y)] = 0, ∀ z ∈ Z.

The above expectation can be replaced with their sample estimates to yield∑
y`∼pt−1

κ′i(G
∗
t (z)− y`) =

∑
y`∼pd

κ′i(G
∗
t (z)− y`), ∀ z ∈ Z.

The above equivalence can be enforced over multiple samples z ∼ pz , and for derivatives κ′i, ∀i.
Replacing the functional form of the generator with a parameterized neural network Gθt yields

∑
zk∼pz

dist

 ∑
y`∼pd

∇xκ(x)|x=Gθt (zk)−y` ,
∑

y`∼pt−1

∇xκ(x)|x=Gθt (zk)−y`

 ,


where dist is any chosen distance metric, such as the 1-norm or 2-norm. When we select the 2-norm,
we obtain:

∑
zk∼pz

∥∥∥∥ ∑
y`∼pt−1

∇xκ(x)|x=Gθt(zk)−y` −
∑

y`∼pd

∇xκ(x)|x=Gθt(zk)−y`
∥∥∥∥2
2

 ,
which concludes the proof of Lemma 6.2.

D.3 Convergence of Discriminator-guided Langevin Diffusion

An in-depth analysis of the convergence of discriminator-guided Langevin diffusion, from the point of
view of stochastic differential equations (SDEs), is out of score for this paper. However, (Lunz et al.,
2018), in the context of adversarial regularization for inverse problems, have extensively analyzed the
following iterative algorithm:

xt+1 = xt − η∇xD
∗
t,θ(x),

where η is the learning rate, and D∗t,θ(x) denotes the optimal discriminator at time t parameterized
by θ. In particular, they show that (Lunz et al. (2018), Theorem 1):

∂

∂η
W(pd, pt) = − E

x∼pt−1

[
‖∇xD

∗
t,θ(x)‖22

]
,

whereW denotes the Wasserstein-1 (earth mover’s) distance. This shows that, the updated distribution
pt is closer in Wasserstein distance to the target distribution pd, in comparison to pt−1. For functions
with ‖∇xD

∗
t,θ(x)‖ = 1, which is the condition under which the gradient-regularized GANs have

been optimized, we have the decay ∂
∂ηW(pd, pt) = −1. While we consider the updates

xt+1 = xt − αt∇xD
∗
t (xt) + γtzt

in discriminator-guided Langevin diffusion, we will show, experimentally, that the update scheme
xt+1 = xt − α0∇xD

∗
t (xt) indeed performs the best, on image datasets (cf. Appendix F).
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E Additional Experimentation on Score- and Flow-matching GANs

In this appendix, we present additional results and ablation experiments from training ScoreGAN and
FloWGAN on Gaussian and Image data.

E.1 Additional Experimental Results on Gaussian Learning

Training Parameters: All models are trained using the TensorFlow (Abadi et al., 2016) library. On
the unimodal Gaussian experiments, the generator is a linear transformation x = Az + b. The
target Gaussian is pd = N (512, 0.75I2) in 2-D and pd = N (0.71n, 0.02In) in the n-D case for
n > 2. In baseline GAN variants with a network-based discriminator, we use a four-layer perceptron
architecture, with 128, 32, 16, and 1 node(s), respectively in each layer. The Leaky-ReLU activation
is used across all layers. The networks are trained with the Adam (Kingma & Ba, 2015) optimizer. A
batch size of 500 is used. The models are compared using the Wasserstein-2 distance between the
target and source GaussiansW2,2(pd, pg) = ‖µd − µg‖22 + Trace

(
Σd + Σg − 2

√
ΣdΣg

)
. On the

Gaussian-mixture model (GMM) learning tasks, the generator is a three-layer perceptron architecture,
with 32, 16, and 2 node(s), respectively in each layer. The input dimensionality is 100 for all the
baseline variants and FloWGAN. For ScoreGAN, we compare against both a 2-D input (resulting in
a square, invertible Jacobian), and a 100-D input (resulting in a rectangular Jacobian matrix).

Additional results on Gaussian and GMM learning: On the GMM learning task, we consider
ablation experiments on training ScoreGAN with, and without, the rectangular Jacobian. In the
scenario where the input and output dimensions match, ScoreGAN fails to converge, and the network
has insufficient capacity to map an unimodal Gaussian to a multimodal one. Figure 6 presents the
generator and data distributions, superimposed on the gradient field over which the generator is
optimized, for various baseline variants, ScoreGAN and FloWGAN. In the case of the baselines,
this corresponds to the gradient of the discriminator, while in ScoreGAN, it is the score of the target
dataset. In FloWGANs, it is the gradient of the polyharmonic spline kernel. Table 3 compares the
Batch Compute Time between generator updates for the baseline GANs, ScoreGAN and FloWGAN.
ScoreGANs are more compute-intensive compared to FloWGANs due to the need for computing the
score of the generator network in each update step. The computational complexity of FloWGAN is
on par with that of kernel-based models such as generative moment-matching networks (GMMNs) or
Poly-WGAN

Choice of the FloWGAN kernel: Besides the PHS kernel, we also consider the radial basis function
Gaussian (RBFG) and inverse multi-quadric kernels, as described in Table 2. As noted in the case of
MMD-GANs (Li et al., 2017), the Gaussian kernel is sensitive to the scale parameter. Therefore, we
consider two scenarios: (a) A single Gaussian kernel with σ = 1; and (2) A mixture of five kernels
with scale parameters σ ∈ {0.5, 1, 2, 4, 8}. Figure 7 depicts the target and generated samples overlaid
on the gradient field. FloWGAN with a single Gaussian kernel collapses to a region about the mean
of the dominating mode of the target. While the gradients in the IMQ kernel decay in regions far
away from both pd and pg, the gradient fields of the PHS and the mixture of Gaussians kernels is
comparable. Since the polyharmonic function is not sensitive to a scale parameter, it converges to the
target reliably for any input dynamic range. We therefore consider the PHS kernel in all experiments
presented in Section 7 and Appendices E.2 and F.

E.2 Additional Experimental Results on Image Learning

We present two sets of results: (a) Image space learning with FloWGANs; (b) Additional results on
latent-space learning with FloWGANs.

Training Parameters: For image-space learning, we consider the standard deep convolutional GAN
(DCGAN, Radford et al. (2016)) architecture, trained on the MNIST and CelebA datasets. The CelebA
images are center-cropped to 140× 140× 3, and resized to 32× 32× 3 though bilinear interpolation.
For the latent-space learning tasks, similar to the approach considered in Poly-WGAN (Asokan
& Seelamantula, 2023b), we train a deep convolutional autoencoder to learn an nd latent-space
distribution of MNIST, SVHN, and CelebA datasets. We consider a 16-D latent space for MNIST,
32-D latent space of SVHN, and 63-D latent space of CelebA. The generator in the baseline GANs
and FloWGAN are subsequently trained to learn a mapping for a 100-D Gaussian to the latent-space
of the images. The generators employ a four-layer perceptron architecture, with 512, 256, 128 nodes
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Figure 6: ( Color online) Convergence of the generator samples (shown in green) to the target
two-component Gaussian (shown in red), pd(x) = 1

5N (x;−51, I) + 4
5N (x; 51, I). The quiver

plot depicts the gradient field of the discriminator on baseline variants, and the gradient of the PHS
kernel convolved with the density difference in FloWGAN and the score of the dataset in the case
of ScoreGAN. While SGAN collapses to the more pronounced mode, FloWGAN and ScoreGAN
converges to both the modes accurately, faster than the baseline counterparts.
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Figure 7: ( Color online) Convergence of the generator samples (shown in green) to the target
two-component Gaussian (shown in red), pd(x) = 1

5N (x;−51, I) + 4
5N (x; 51, I) considering

various choices of the kernel function in FloWGAN. The quiver plot depicts the gradient field of
the kernel convolved with the density difference. The single-component Gaussian kernel (RBFG)
performs poorly if the chosen scale does not match the scale of the data. The mixture of Gaussians
(MoG) kernel (Li et al., 2017) alleviates this issue. FloWGANs with the MoG, inverse multiquadric
(IMQ) and Polyharmonic spline (PHS) kernel converge to the target data accurately.

in the first three layers, and nd nodes in the output layer. The batch size is set to 100 across all
experiments, while the Adam optimizer is used to train the networks. The discriminator in baseline
GANs is identical to the Gaussian learning case.

Experimental Results: Figure 8 presents the images generated by FloWGAN when trained on
MNIST and CelebA. We observe that FloWGAN is capable of learning on the image-space for
relatively simple distribution such as MNIST. The performance of FloWGAN is superior to kernel-
based counterparts such as GMMNs and Poly-WGAN. On CelebA, since the base Gaussian and
PHS kernels do not scale well with the data dimensionality, the baselines fail to generate realistic
images. The gradient of the PHS kernel considered in FloWGAN scales more favorably. While
the kernels decay to zero either exponentially, or in polynomial time, the gradient fields induced by
them are relatively more stable, owing to the conditioning by x. Therefore, FloWGANs are stable
even in high-dimensional cases. However, all kernel-based methods are sub-par, compared to the
baseline DCGAN. We attribute this to the curse of dimensionality – the number of samples required
to approximate the convolution grows as O(n) for data x ∈ Rn.

Table 4 presents the FID achieved by the best-case models when trained on the latent-space of the
images. On low-dimensional latent spaces such as MNIST, FloWGAN is on par with Poly-WGAN,
while outperforming the baseline GANs. However, on higher-dimensional latent spaces as in the
case of CelebA, FloWGAN is superior to the baselines. To generate more realistic images, one could
consider a flipped scenario, wherein Langevin update steps are used to generate realistic images based
on the gradient field considered in FloWGAN. This is a promising direction for future research.
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Table 3: A comparison of baseline GAN variants and FloWGAN in terms of their training time
(measured in seconds per batch) on Gaussian learning tasks. ScoreGANs are more compute-intensive
compared to FloWGANs due to the need for computing the score of the generator network in
each update step. For image data, and DCGAN architecture, the change-of-variables approach to
computing the generator score becomes impractical. The computational complexity of FloWGAN is
on par with that of kernel-based models such as generative moment-matching networks (GMMNs) or
Poly-WGAN, as only the norm-based kernel computations are required.

GAN Variant
Batch Compute Time (seconds/batch)

2-D data 128-D data

Batch size 500 Batch size 100

SGAN 0.4651± 0.023 0.2031± 0.023

LSGAN 0.4622± 0.021 0.1973± 0.031

LS-DRAGAN 0.4854± 0.020 0.2066± 0.019

WGAN-GP 0.4553± 0.031 0.1849± 0.031

WGAN-Rd 0.4427± 0.032 0.1932± 0.022

Poly-WGAN 0.2316± 0.012 0.1571± 0.020

GMMN (RBFG) 0.2015± 0.020 0.1881± 0.031

GMMN (IMQ) 0.1981± 0.021 0.1579± 0.019

ScoreGAN (Ours) 0.3222± 0.022 1.1178± 0.015

FloWGANs (Ours) 0.1152± 0.011 0.1379± 0.015

GMMN (IMQ) Poly-WGAN FloWGAN (PHS)
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Figure 8: Images generated by GMMN-IMQ and Poly-WGAN and the proposed FloWGAN (PHS)
on MNIST and CelebA image-space learning task. While FloWGAN is superior to the baselines
in MNIST generation, the generated images are relatively noisy (best seen when zoomed-in on
the .pdf). On CelebA, since the base Gaussian and PHS kernels do not scale well with the data
dimensionality, the baselines fail to generate realistic images. The gradient of the PHS kernel
considered in FloWGAN scales more favorably. However, the quality of images generated are sub-par
compared to baseline GANs. We attribute this to the curse of dimensionality – the number of samples
required to approximate the convolution grows as O(n) for data x ∈ Rn.

E.3 Training Algorithm

The training procedure for ScoreGANs and FloWGANs are presented in Algorithms 1 and 2,
respectively. ScoreGANs are computationally more intensive to train, due to the need to compute
the Jacobian of the generator at each training step. Consequently, ScoreGANs do not scale to
high-dimensions. FloWGAN train the generator on the kernel-based loss given in
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Table 4: A comparison of Baseline GAN variants and FloWGAN in terms of the FID metric. Poly-
WGAN implements the optimal polyharmonic spline (PHS) discriminator by means of a radial basis
function networks, while the other baselines train a discriminator network. Poly-WGAN outperforms
FloWGAN with the PHS kernel on MNIST. However, the FloWGAN approach scales more favorably
to higher-dimensions, results in superior performance on SVHN and CelebA

WGAN flavor MNIST (16-D) SVHN (32-D) CelebA (63-D)

SGAN 21.24 53.561 49.840

WGAN-GP 19.441 51.241 49.840

WGAN-LP 17.825 50.342 50.694

WGAN-Rd 17.948 49.231 48.064

WGAN-Rg 18.498 52.321 51.104

Poly-WGAN 17.397 48.341 45.886

FloWGAN (Ours) 17.492 47.980 42.263

Algorithm 1: ScoreGAN − Training the GAN generator trained to minimize the distance
between its score and the score of the data.

Input: Training data x ∼ pd, Gaussian prior distribution pz = N (µz,Σz), Max training
iterations T .

Parameters: Batch size M , optimizer learning rate η, number of radial basis function (RBF)
centers N , discriminator kernel κ, kernel order k.
Models: Generator: Gθ; Data score model: Sdφ = ∇x ln (pd(· ; φ)).
while t = 1,2,. . . ,T do

Sample: z` ∼ pz – A batch of M noise samples.
Sample: x` = Gθt(z`) – Generator output samples.
Compute: JGθt (z`) – Jacobian of the generator evaluated at z`.
Compute: ∇xln pt – Score of the generator evaluated at Gθt(z`) (cf. Lemma 3.3):

∇xln pt(x)|x=x`=−J−TGθt

(
∇z ln|det JGθt (z`)|+ z`

)
,

Compute: Score-matching-based generator loss (cf. Section 6):
LScore
G (θt) =

∑
x`
∇x‖ ln (pt(x`))− Sdφ(x`)‖22.

Update: Generator Gθt+1 : θt+1 = η∇θ[LScore
G (θ)]|θ=θt – Generator at θt+1 is the one

that minimizes the score matching loss of the generator at θt
Output: Samples output by the Generator: x = GθT (z)

F Additional Experimentation on Discriminator-guided Langevin Sampling

We present additional experimental results on generating 2-D shapes, and image data using the
discriminator-guided Langevin sampler.

F.1 Additional Experimental Results on Synthetic Data Learning

On the 2-D learning task, we present additional combinations on the shape morphing experiment.

Training Parameters: All samplers are implemented using the TensorFlow (Abadi et al., 2016)
library. The discriminator gradient is built as a custom radial basis function network, whose weights
and centers are assigned at each iteration. At t = 0, the centers gj ∼ pt−1 are sampled from the
unit Gaussian, i.e., p−1 = N (0, I). In subsequent iterations, the batch of samples from time instant
t− 1 serve as the centers for D∗t . Based on experiments presented in Appendix F.2, we set γt = 0
and αt = 1 ∀ t. The input and target distributions are created following the approach presented
by (Mroueh & Rigotti, 2020). Given an 8-bit grayscale input (output) image I(p, q) (cf. Figure 9),
the input (output) dataset consists of points drawn uniformly from the regions of the image where
I(p, q) < 128.
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Algorithm 2: FloWGAN − GAN with the generator trained to minimize the flow-filed induced
by the gradient of the discriminator kernel.

Input: Training data x ∼ pd, Gaussian prior distribution pz = N (µz,Σz), Max training
iterations T .

Parameters: Batch size M , optimizer learning rate η, number of radial basis function (RBF)
centers N , discriminator kernel κ, kernel order k.
Models: Generator: Gθ.
while t = 1,2,. . . ,T do

Stored Data: Samples from the Generator at t− 1:
{yi ∼ pt−1 ; yi = Gθt−1

(zi), zi ∼ pz}
Sample: z` ∼ pz – A batch of M noise samples.
Sample: Gθt(z`) – Generator output samples.
Sample: ỹj ∼ pd – A batch of N target data reference locations.
Sample: zi ∼ pz – A batch of M reference noise samples.
Compute: Kernel-gradient-based generator loss (cf. Lemma 4.2):

LFloW
G (θt) = Ez∼pz

[∥∥∥∥∑y∼pt−1
∇xκ(x)−∑y∼pd∇xκ(x)

∥∥∥∥2
2

∣∣∣∣
x=Gθt(z)−y

]
.

Update: Generator Gθt+1
: θt+1 = θt + η∇θ[LFloW

G (θ)]|θ=θt – Generator at θt+1 is the
one whose samples are pulled towards pd, and pushed away from pt−1

Output: Samples output by the Generator: x = GθT (z)

Figure 9: ( Color online) Images considered in generating the source and target in the Shape
morphing experiment.

Experimental Results: We consider the Heart and Cat shapes as the target, while considering various
input shapes, corresponding to varying levels of difficulty in matching to the target. In the case of
learning the Heart shape, for input shapes that do not contain holes, the convergence is relatively
quick, and the shape matching occurs in about 100 to 250 iteration. For more challenging input
shapes, such as the Cat or the NeurIPS logo, the discriminator-guided Langevin sampler converges in
about 500 iterations. This is superior to the reported 800 iterations in the Unbalanced Sobolev descent
formulation. The results are similar in the case where the Cat image is the target (cf. Figure 10).

F.2 Additional Experimental Results on Image Learning

We present ablation experiments on generating images with the discriminator-guided Langevin
sampler to determine the choice of αt and γt in the update regime. We also provide additional images
pertaining to the experiments presented in the Main Manuscript

Choice of coefficients αt and γt: For the ablation experiments, we consider MNIST, SVHN, and
64-dimensional CelebA images. Based on the ablation experiments presented in Appendix E.1,
we consider the kernel-based discriminator with the polyharmonic spline kernel in all subsequent
experiments. Recall the update scheme:

xt = xt−1 − αt∇xD
∗
t (xt; pt−1, pd) + γtzt, where zt ∼ N (0, I)

Based on the observations made by Karras et al. (2022), to ascertain the optimal choice of the
coefficients, we consider the scenarios:

• The ordinary differential equation (ODE) formulation, wherein the noise perturbations
are ignored, giving rise to and ODE that the samples are evolved through. Here γt = 0, ∀ t.

• The stochastic differential equation (SDE) formulation, wherein we retain the noise
perturbations. Based on the links between score-based approaches and the GANs, we
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consider the approach presented in noise-conditioned score networks (NCSNv1) (Song &
Ermon, 2019), with γt =

√
2αt.

Within these two scenarios, we further consider the following subcases:

• Unadjusted Langevin dynamics (ULD), wherein αt is made static, i.e., αt = α0, ∀ t.
• Annealed Langevin dynamics (ALD), wherein αt is decayed. While various approaches

have been proposed for scaling (Song & Ermon, 2019, 2020; Song et al., 2021b; Jolicoeur-
Martineau et al., 2021; Karras et al., 2022), we consider the geometric decay considered in
NCSNv1 (Song & Ermon, 2019).

For either case, we present results considering α0 ∈ {100, 10, 1}.
Figures 11–13 present the images generated by the discriminator-guided Langevin sampler on MNIST,
SVHN and CelebA, respectively, for the various scenarios considered. Across all datasets, we observe
that annealing the coefficients results in poor convergence. We attribute this to the fact that the
polyharmonic kernel, being a distance function, decays automatically as the iterates converse, i.e., as
pt converges to pd. Consequently, the magnitude of the discriminator gradient, in the case when αt is
decays, is too small to significantly move the particles along the discriminator gradient field. Next,
we observe that for relatively small α0 ≤ 10, the samplers converge to realistic images. When α0 is
large, the resulting gradient explosion during the initial steps of the sampler results in mode-collapse
in all scenarios. Thirdly, in choosing zt, the experimental results indicate that the model converges
to visually superior images when zt = 0. For the scenarios where αt as the coefficient of∇xD

∗
t is

kept constant, the coefficient γt =
√

2αt continues to be decays. When zt is non-zero, the generated
images are noisy. We attribute the convergence of the discriminator-guided Langevin sampler to
unique samples even in scenarios when zt is zero, to the implicit randomness (of RBF centers)
introduced by the sample-estimation of convolution in the discriminator D∗t .

The superior convergence of the proposed approach is further validated by the iterate convergence
presented in Figure 18. We compare discriminator-guided Langevin sampler, with αt = α0 = 10,
with and without noise perturbations zt, against the base NCSN model, owing to the links to the
score-based results derived in ScoreGANs and FloWGANs. We plot ‖xt − xt−1‖22 as a function
of iteration t for the MNIST learning task. In NCSN, the iterates converge at each noise level, and
subsequently, when the noise level drops, the sample quality improved. This is consistent with the
observations made by Song & Ermon (2020), who showed that the score network Sθ implicitly scales
its output by the noise variance σ. The proposed approach, with zt = 0, performs the best.

Uniqueness of generated images: As the kernel-based discriminator directly operates on the target
data, drawing batches of samples as centers in the RBF interpolator, an obvious question to ask is
whether the discriminator-guided Langevin iterations convergence to unique samples not present in
the dataset. To verify this, we perform a k-nearest neighbor analysis, considering k = 9. Figures 14–
16 present the top-k neighbors of samples generated by the proposed images from each digit class of
MNIST, SVHN, and CelebA datasets. The neighbors are found across all digit classes in the case of
MNIST and SVHN. We observe that the proposed approach does not memorize the target data. In
the case of SVHN, considering the sample generated from digit class 5 of digit class 9, we observe
that the nearest neighbor is from a different class, indicative of the sampler’s ability to interpolate
between the classes seen as part of discriminator centers during sampling.

Details on the experiment present in Section 7.2 of the Main Manuscript: Figure 17 presented the
images, considering the Langevin sampler with αt = α0 = 10 with zt = 0. Across all three datasets,
we observe that the models converge to nearly realists samples in about t = 500 iterations, while
subsequent iterations serve to denoise the images. Animations pertaining to these iterations are
provided as part of the supplementary material.
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Figure 10: ( Color online) Samples across iteration for the discriminator-guided Langevin sampler,
considering various shapes of the initial uniform distributions, given a target uniform distribution
shaped like a Heart, or a Cat. For relatively simpler input shapes, such as the circular pattern, the
sampler converges in about 100 iterations, while in the spiral case, the sampler converges in about
250 steps.
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Figure 11: ( Color online) Images generated using the discriminator-guided Langevin sampler
when samples using the MNIST dataset as the target. The model fails to converge when αt decays,
for small α0 ≤ 10. For the case when α0 = 100, some samples diverge as a consequence of gradient
explosion. We observe that α0 = 10, with zt = 0 yields the best performance.
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Figure 12: ( Color online) Images generated using the discriminator-guided Langevin sampler
when samples using the SVHN dataset as the target. The model fails to converge when geometrically
decaying αt decays, or when zt is non-zero. As in the MNIST case observe that α0 = 10, with
zt = 0 yields the best performance. Setting α0 = 1 with zt = 0 results in slow convergence.
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Figure 13: ( Color online) Images generated using the discriminator-guided Langevin sampler
when samples using the CelebA dataset as the target. The model fails to converge when geometrically
decaying αt decays, or when zt is non-zero. Setting α0 ∈ [1, 10], with zt = 0 results in the sampler
generating realistic images. For these choices of α0, when zt is non-zero, the generated images are
noisy.
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xT k-nearest neighbors of xT (k = 9)

Figure 14: ( Color online) The k-nearest neighbor (k-NN) test performed on images generated
by the discriminator-guided Langevin sampler, when αt = α0 = 10 and zt = 0, on the MNIST
dataset. We observe that the generated images are unique, compared to the top-9 neighbors drawn
from the target dataset, indicating that the sampler does not memorize the images seen as part of the
interpolating RBF discriminator’s centers.
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xT k-nearest neighbors of xT (k = 9)

Figure 15: ( Color online) The k-nearest neighbor (kNN) test performed on images generated by
the discriminator-guided Langevin sampler, when αt = α0 = 10 and zt = 0, on the SVHN dataset.
We observe that the generated images are unique, compared to the top-9 neighbors drawn from the
target dataset. For generated samples such as the digit 9 or digit 5, we observe that the top k-NN
images are from classes different from that of the generated image, indicative of the model’s ability
to interpolate between the classes seen as part of discriminator centers during sampling.
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xT k-nearest neighbors of xT (k = 9)

Figure 16: ( Color online) The k-nearest neighbor (kNN) test performed on images generated by
the discriminator-guided Langevin sampler, when αt = α0 = 10 and zt = 0, on the CelebA dataset.
The generated images are unique, compared to the top-9 neighbors drawn from the target dataset,
which suggests that the proposed approach does not learn to memorize samples.
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Figure 17: ( Color online) Images generated using the discriminator-guided Langevin sampler. The
score in standard diffusion models is replaced with the gradient field of the discriminator, obviating
the need for any trainable neural network, while generating realistic samples.
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Figure 18: ( Color online) Plot comparing the iterate convergence of the discriminator-guided
Langevin diffusion model, compared against the baseline NCSNv1 (Song & Ermon, 2019) model.
The score in NCSN is replaced with the output of a score network Sθ. The norm of the iterate-
differences decays as the noise-scale in the case of NCSN. This is consistent with the observations
made by Song & Ermon (2020), who showed that the score network Sθ implicitly scales its output
by the noise variance σ. In discriminator-guided Langevin diffusion, adding noise results in poorer
performance, while the unadjusted Langevin sampler performs the best.

G Computational Resources

All experiments were carried out using a TensorFlow 2.0 (Abadi et al., 2016) backend. Experiments on
NCSN were built atop a publicly available implementation (URL: https://github.com/Xemnas0/
NCSN-TF2.0). Experiments were performed on SuperMicro workstations with 256 GB of system
RAM comprising two NVIDIA GTX 3090 GPUs, each with 24 GB of VRAM.

H Source Code and Animations

The TF 2.0 (Abadi et al., 2016) based source code for implementing ScoreGANs, FloWGANs, and
discriminator-guided Langevin diffusion have been included as part of the Supplementary Material
and are accessible at https://github.com/DarthSid95/ScoreFloWGANs. Additionally, we have
also provided animations corresponding to the Shape Morphing experiments presented in Figure 10,
and the images generated in Figures 11– 13 and Figure 17. Full-resolution versions of images
presented in the paper are accessible in the GitHub Repository.

Broader Impact

The main goal of this paper is to introduce a unifying theory for GANs and score-based models, both
of which are classes of generative modeling schemes. In recent years, the advancements made in
the context of image-to-image (Karras et al., 2021; Kang et al., 2023) or text-to-image (Yu et al.,
2022) based generative models have brought to light, a need to better explain their inner workings.
Consequently, this work aims to demystify various aspect of GAN and score-based models, linking
both their causes for success, or their failures. Whether these insights are used to improve desired
features such as the better diversity and reduced bias, or to exemplify their negative qualities, the
choice lies in the hands of the model engineers!
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