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Abstract

Generative adversarial networks (GANs) are essentially a min-max game between
the discriminator and a generator. Coulomb GANs have a closely related formula-
tion where the generator minimizes the potential difference between real (negative)
and fake (positive) charge densities, wherein the discriminator approximates a
low-dimensional Plummer kernel centered around the samples. Motivated by links
between electrostatic potential theory and the Poisson partial differential equation
(PDE), we consider the underlying functional optimization in Coulomb GAN and
show that the associated discriminator is the optimum of a first-order gradient-
regularized Wasserstein GAN (WGAN) cost. Subsequently, we show that, within
the regularized WGAN setting, the optimal discriminator is Green’s function to the
Poisson PDE, which corresponds to the Coulomb potential. As an alternative to
training a discriminator in either WGAN or Coulomb GAN, we demonstrate, by
means of synthetic data experiments, that the closed-form implementation of the
optimal discriminator leads to a superior performance of the GAN generator.

1 Introduction

Generative adversarial networks (GANs) (Goodfellow et al., 2014) have gained immense popular-
ity over the past decade due to their ability to generate realistic images, requiring low sampling
times (Karras et al., 2019, 2020, 2021). GANs are a min-max game, where a generator network G
is trained to learn the underlying distribution pd of a target dataset with the aid of a discriminator
networkD. The generator is essentially a transformation of a noise distribution pz , typically Gaussian,
into the push-forward distribution pg = G#(pz).

Wasserstein GANs (WGAN), introduced by Arjovsky et al. (2017) consider a discriminator that
approximates a distance (called integral probability metric or IPM) between the target and generator
distributions, which in turn, induces a constraint class from which the discriminator function is
drawn. For example, WGANs consider Lipschitz-1 constraints, while WGAN-GP (Gulrajani et al.,
2017) and Sobolev GANs (Mroueh et al., 2018) consider functions with bounds on the norm of the
gradient. Subsequent variants proposed by Gulrajani et al. (2017); Bellemare et al. (2017); Mescheder
et al. (2018) and Adler & Lunz (2018) also consider gradient-based regularizers to improve training
stability. However, the min-max nature of the optimization makes it difficult to derive convergence
guarantees on the GAN training, either in the parametric sense (Li et al., 2017b), or in the functional
sense (Unterthiner et al., 2018).

Although the WGAN loss is a popular choice in most applications (Kang et al., 2022), in an effort
to derive GANs with guaranteed convergence to the Nash equilibrium of the game, Unterthiner
et al. (2018) consider a discriminator network that approximates the Plummer kernel evaluated at
the real and generated sample points. They showed that, given the sample approximation of the
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Plummer-kernel discriminator, the GAN generator converges to the desired optimum, i.e. p∗g = pd.
However, the links between the Coulomb GAN and IPM based losses was not explored and the
underlying optimization problem that the discriminator solves is unclear. We therefore wish to ask
the following question in this paper – How do the Plummer/Coulomb family of kernels link to
classical IPM GAN optimization?

1.1 The Proposed Approach

We analyze the optimization problem in Coulomb GANs considering the Plummer kernel. In
potential theory, the optimal Coulomb GAN discriminator kernel arises naturally as the consequence
of gradient-regularization, which we show, in the present context, corresponds to optimizing the
gradient-regularized Wasserstein GAN (WGAN). We analyze the gradient-regularized WGAN cost
in a variational setting, and show that the optimal WGAN discriminator solves a Poisson PDE, whose
Green’s function gives rise to the Coulomb GAN’s Plummer-kernel based potential function. Unlike
in Coulomb GANs, where a discriminator network is used to approximate the kernel function, we
implement the optimum as is, and demonstrate on synthetic data, that the closed-form discriminator
performs superior to both gradient-penalized WGANs, and the kernel-approximating Coulomb GANs.
The TensorFlow (Abadi et al., 2016) based implementation of the proposed approach is available
at https://github.com/DarthSid95/RBFCoulombGANs. As a future scope of this work, one
could solve Poisson PDEs in high-dimensional spaces through appropriate numerical solvers, similar
to the approaches used in Diffusion models (Ho et al., 2020) and score-matching approaches (Song &
Ermon, 2019).

2 The Coulomb GAN Discriminator

Unterthiner et al. (2018) consider the task of generative learning, where the objective is to minimize
the difference between the data and generator distributions, ρ(x) = pg(x) − pd(x), given data
x ∈ Rn. Motivated by the connection to electrostatics, they consider the potential function associated
with the difference, and a chosen kernel κ, given by

Φ(x) =

∫
X
ρ(y)κ(x,y)dy, where κ(x,y) =

(√
∥x− y∥2 + ϵ2

)−d

, (1)

where d ≤ n− 2, X denotes the support of the discriminator, typically the convex hull encompassing
the supports of pd and pg, and ϵ is a small non-zero constant used to eliminate the singularity in
κ. For d = n − 2, κ represents the Plummer kernel. Intuitively, the potential in Eq. (1) induces a
field over X where the generator is forced to generate samples that are repelled from those samples
deemed fake by the discriminator, while being attracted towards those classified as reals. In practice,
Φ is approximated by a sample average, computed over a mini-batch, and is given by

Φ̂(x) =
1

Ng

Ng∑
j=1

κ(x, gj)−
1

Nd

Nd∑
i=1

κ(x,di), (2)

where di and gj represent the Nd and Ng samples drawn from pd and pg , respectively. The Coulomb
GAN discriminator is trained to approximate Φ in the least-squares sense, while the generator is
trained to maximize D, the approximation of Φ̂, for its generated samples, i.e.,

LC
D(D;G) =

1

2
Ex∼px

[(
D(x)− Φ̂(x)

)2
]
, and LC

G(G;D) = −1

2
Ez∼pz

[D(G(z))] ,

where px(x) = 1
2

∫
N (x;G(z), εI) pz(z) dz + 1

2

∫
N (x;y, εI) pd(y) dy denotes a distribution

whose samples are drawn from a mix of pd and pg , and corrupted with white Gaussian noise having a
small variance ε. Unlike in the standard GAN and WGAN formulations, Unterthiner et al. (2018)
showed that the alternating minimization of LC

D and LC
G results in attaining the unique global optimum

(D∗, G∗), where p∗g = G∗
#(pz) = pd, with G∗

# denoting the push-forward distribution through the
optimal generator G∗. However, the nonlinearities introduced by the choice of κ, and the slow
learning of the discriminator caused by the least-squares cost, mandate the use of small learning rates
for training the two networks. Furthermore, the link between the Coulomb GAN discriminator cost
LC
D and other IPM based GAN optimization has not been fully explored. In this paper, we show that

Coulomb GANs can be linked to the WGANs through the solution to the Poisson PDE.
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3 Gradient-regularized WGAN and the Plummer Kernel

Arjovsky et al. (2017) presented the GAN learning problem as one of optimal transport, where the
critic (or discriminator) minimizes the earth-mover’s distance or Wasserstein-1 distance between
pd and pg. Through the Kantorovich-Rubinstein duality, they defined the WGAN discriminator
loss as LW

D = Ex∼pg
[D(x)] − Ex∼pd

[D(x)] and the generator loss as LW
G = −LW

D , such that
D(x) is Lipschitz-1. Gulrajani et al. (2017) approximate the Lipschitz-1 constraint though a gradient
penalty Ex∼pint

[
(∥∇D (x) ∥2 − 1)

2
]
, where pint is an interpolated distribution between pd and

pg. Subsequent works (Kodali et al., 2017; Petzka et al., 2018; Terjék, 2020) replaced pint with
alternatives that resulted in stabler training. For example, Mescheder et al. (2018) and Mroueh et al.
(2018) consider ΩR

D = Ex∼pr

[
∥∇D(x)∥22

]
for various choices of pr.

WGANs, PDEs and the Coulomb Kernel: Mroueh et al. (2018) showed that the optimal solutions
in Sobolev GANs solve a family of Fokker-Planck PDEs. However, they do not invert the general
Fokker-Planck operator due to computational constraints. Recall that, for x ∈ Rn, the Plummer-like
kernel, with ϵ = 0 represents the radially-symmetric Coulomb kernel, given by

ψn(x) =


|x| for n = 1

− ln (∥x∥) for n = 2

∥x∥2−n for n = 3, 4, 5, . . . .

(3)

While generative moment matching networks (GMMNs) (Li et al., 2015) and maximum mean
discrepancy GANs (MMD-GANs) (Li et al., 2017a) consider Gaussian and inverse multi-quadric
kernels in the context of GAN learning, the Coulomb kernels have been extensively studied in
interpolation literature (Aronszajn et al., 1983; Iske, 2004; Fasshauer, 2007). They are known to
arise in mesh-free gradient-regularized least-squares interpolation, where the smoothness constraint
is enforced over X . Motivated by these connections, we consider the IPM GAN discriminator cost
with a gradient-norm constraint, given by

LD = Ex∼pg
[D(x)]− Ex∼pd

[D(x)] + λd

∫
X
∥∇D(x)∥22 dx . (4)

The above penalty can be seen as a special case of ΩR
D with pr set to the uniform measure over X .

The following theorem links the discriminator in gradient-regularized GANs to the Coulomb GAN.
Theorem 3.1. The optimal discriminator that minimizes the LD solves the following Poisson PDE:

∆D(x) =
ρ(x)

2λd
, ∀ x ∈ X , (5)

where ∆ is the Laplacian operator. The particular solution, D∗
p(x), is given by

D∗
p(x) =

1

2λd
(ρ ∗ ψn) (x), (6)

which is a multidimensional convolution with the Coulomb kernel, which in turn is the fundamental
solution to the Laplace equation: ∆ψn(x) = Cn δ(x), for some constant Cn.

Proof. The discriminator PDE can be derived through the Calculus of Variations applied to the cost
in Equation (4). PDEs of this type have been extensively researched and Evans (2010)’s book on
Partial Differential Equations is an excellent reference on this topic. The details are provided in
Appendix A.

Equation (5) indeed mimics results from electrostatics, and as observed in Coulomb GANs, the
optimal discriminator is the potential function, with the generator and target distributions representing
positive and negative charge densities, respectively. Additionally, these results show that optimizing
the discriminator in GANs is closely linked to solving PDEs. While Theorem 3.1 provides the partic-
ular solution to the discriminator, the general solution also includes the homogeneous component, i.e.,
solutions to ∆f(x) = 0, that belong to the space Pn

1 of first-degree polynomials P (x) = ⟨a,x⟩+a0.
The general solution to the discriminator PDE is D∗(x) = D∗

p(x) + P (x). The exact choice of
the polynomial P (x) ∈ Pn

1 depends on the boundary conditions and will be discussed shortly. The
multidimensional convolution in a high-dimensional space makes Equation (6) impractical. The
following lemma presents an implementable form of the optimal discriminator.
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Figure 1: The Wasserstein-2 distance versus iterations on learning (a) a 2-D Gaussian; and (b) a
2-D Gaussian mixture; for various WGAN, Coulomb GAN and RBF-Coulomb GAN variants. The
RBF-Coulomb GAN discriminator leads to a superior generator, compared to the baselines.

Lemma 3.2. The optimal discriminator D∗
p(x) given in Eq. (6) can be approximated through the

following sample estimate:

D̃∗
p(x) =

1

2Ngλd

∑
gj∼pg

ψn(x− gj)−
1

2Ndλd

∑
di∼pd

ψn(x− dj), (7)

where ψn is as described in Eq. 3.

Lemma 3.2 shows that the sample approximation of the gradient-regularized WGAN discriminator
equals the potential function described in Equation 1 for ϵ = 0. As opposed to training the GAN
discriminator on LD or LC

D with gradient-descent, we directly implement D̂∗(x) = D̂∗
p(x)+⟨a,x⟩+

a0. D̂∗
p(x) can be constructed using a radial basis function (RBF) network with pre-determined

weights. Preliminary experiments indicate that the choice of the polynomial does not affect the
generator optimization. Choosing a = 0 and a0 = 0 results in the Coulomb GAN solution.

4 Experimental Validation

To validate using a RBF discriminator, we present preliminary experiments on learning 2-D unimodal
and multimodal Gaussian data. We compare the proposed approach, called RBF-Coulomb GAN,
against the baseline Coulomb GAN, and gradient-regularized WGAN variants such as WGAN-
GP (Gulrajani et al., 2017), WGAN-Rd and WGAN-Rg (Mescheder et al., 2018), and WGAN-
LP (Petzka et al., 2018). Network parameters and data specifications are described in Appendix C.
Performance comparisons using the Wasserstein-2 distance

(
W2,2(pd, pg)

)
are presented in Fig-

ures 1(a) and (b). In both the scenarios, the proposed RBF-Coulomb GAN outperforms the baselines
(lower W2,2 scores). RBF-Coulomb GAN is also less sensitive to learning-rate perturbations, com-
pared to the trainable-discriminator counterparts. These results showcase the superiority of solving
the discriminator PDE over stochastic-gradient optimization.

5 Conclusions

We showed that the Coulomb GAN discriminator is, in fact, the optimum to a special case of gradient-
regularized WGAN. More precisely, the solution comes up as the Green’s function to the Poisson
PDE, when approximated using RBFs. Considering toy examples, we demonstrate the superior
convergence of employing the closed-form RBF discriminator over the baseline methods. To derive
the generalization to Plummer-like kernels for d ≤ n− 2, one could consider higher-order gradient
penalties, which give rise to PDEs involving iterated Laplacian operators. Exploring PDE solvers to
implement the optimal discriminator in image learning scenario is a promising direction for research.
Results from denoising diffusion models (Ho et al., 2020; Xiao et al., 2022) and score-matching
networks (Song & Ermon, 2019, 2020; Song et al., 2021) could be leveraged to learn the optimal
Coulomb GAN discriminator in a way that avoids issues with training such as learning-rate scheduling
and mode collapse. One could also derive PDEs and associated WGAN costs that correspond to
generalizations of Plummer kernel dimension d. The variational approach can also be used to derive
PDEs that govern other GAN discriminators that do not conform to IPM minimization, such as those
with relativistic discriminators (Jolicoeur-Martineau, 2019).
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A Proof of Theorem 3.1: Gradient-regularized WGANs

First, we recall a few useful results from the Calculus of Variations. Consider the functional
optimization of a cost L defined as

L (f(x), {∂if(x)}) =
∫
X
F (x, f(x), {∂if(x)}) dx, (8)

where ∂if(x) =
∂f

∂xi
denotes the partial derivative of f with respect to the ith entry of x. The

Euler-Lagrange condition that the optimizer f∗(x) of the cost L must satisfy is given by

∂F
∂f

−
N∑
i=1

[
∂

∂xi

(
∂F

∂(∂if)

)]∣∣∣∣∣
f=f∗(x)

= 0. (9)

We can now derive the optimal discriminator in gradient-regularized WGAN. Recall that

LD = Ex∼pg
[D(x)]− Ex∼pd

[D(x)] + λd

∫
X
∥∇D(x)∥22 dx

=

∫
X
D(x)ρ(x) + λd∥∇D(x)∥22 dx,

where ρ(x) = pg(x) − pd(x), and ∥∇D(x)∥22 =
∑
i

(∂iD)2 is the square of the ℓ2 norm of the

gradient vector. Differentiating the integrand in LD gives

∂F
∂f

= ρ(x) and
N∑
i=1

[
∂

∂xi

(
∂F

∂(∂if)

)]
= 2λd

N∑
i=1

∂i (∂iD(x)) = 2λd∆D(x).

Enforcing the Euler-Lagrange condition yields the PDE given in Equation (5):

∆D(x) =
ρ(x)

2λd
, ∀ x ∈ X .

The above Poisson PDE can be solved to obtain the optimal discriminator function. As noted
by Evans (2010); Unterthiner et al. (2018), the family of Coulomb kernels ψn(x) are Green’s

functions to the Laplace operator, i.e., ∆ψn(x) = Cn δ(x), where Cn =
Γ(n

2 +1)
n(n−2)π

n
2
, where in turn

Γ (z) =
∞∫
0

tz−1e−t dt denotes the Gamma function (Aronszajn et al., 1983). Convolving both sides

of the Poisson PDE with ψn gives the optimal discriminator:

∆(D ∗ ψn) (x) = (D ∗∆ψn) (x) = (D ∗ Cn δ) (x)

∣∣∣∣
D=D∗

=
1

2λd
(ρ ∗ ψn) (x)

⇒ D∗(x) =
1

2Cnλd
(ρ ∗ ψn) (x), ∀ x ∈ X .

This completes the proof of Theorem 3.1.

B Proof of Lemma 3.2: Sample Estimate of the Optimal Discriminator

Consider the closed-form optimal discriminator given in Equation (6):

D∗
p(x) =

1

2λd
(ρ ∗ ψn) (x) =

1

2λd
((pg − pd) ∗ ψn) (x),

where λd accounts for the effect of Cn. Without loss of generality, we assume that n > 2. From the
definition of the convolution, we have

D∗
p(x) =

1

2λd

∫
X
(pg(y)− pd(y)) ∥x− y∥2−n dy

=
1

2λd

(
Ey∼pg

[∥x− y∥2−n]− Ey∼pd
[∥x− y∥2−n]

)
.
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As in the case of Coulomb GAN (Unterthiner et al., 2018), the expectations can now be replaced with
N -sample estimates as follows:

D̃∗
p(x) =

1

2Ngλd

∑
gj∼pg

∥x− gj∥2−n − 1

2Ndλd

∑
di∼pd

∥x− di∥2−n,

where D̃∗
p is essentially a radial basis function expansion.

A similar analysis could be carried out for n = 1, 2, and the corresponding discriminators are:

D̃∗
p(x) =


1

2Ngλd

∑
gj∼pg

|x− gi| −
1

2Ndλd

∑
di∼pd

|x− di|, for x ∈ Rn, n = 1,

1

2Ndλd

∑
di∼pd

ln(∥x− di∥)−
1

2Ngλd

∑
gj∼pg

ln(∥x− gj∥), for x ∈ Rn, n = 2.

The generic form for D̃∗
p is given by

D̃∗
p(x) =

1

2Ngλd

∑
gj∼pg

ψn(x− gj)−
1

2Ndλd

∑
di∼pd

ψn(x− dj),

where ψn is as defined in Equation (3).

C Network Specifications and Training Parameters

Data: We consider unimodal learning on a 2-D Gaussian N (3.5, 1.25I), where 3.5 denotes a 2-D
vector with both values equal to 3.5, and I is the identity matrix. For the multimodal learning task,
we consider an eight-component Gaussian mixture model (GMM) with component means selected
from [0, 1]2, each having standard deviation 0.02.

Network: We consider the affine transformation of the noise z, given by x = Mz + b to learn
2-D Gaussian data. The discriminator for RBF-Coulomb GAN is an RBF network whose weights
are computed out-of-the-loop, thereby obviating the need for network-based optimization of the
discriminator. On the GMM task, the generator consists of three fully-connected layers of 10, 10
and 5 nodes, followed by an output layer of 2 nodes. The activation used is Leaky ReLU. The
discriminator in the baselines consists of three fully-connected layers with Leaky ReLU activation
and 20, 10, and 1 node(s). The discriminator is identical for both the Gaussian and GMM learning
tasks.

Training Parameters: The networks are trained using the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 0.02 for the generator and 0.075 for the discriminator. The batch size is set to
500. The models are evaluated using the Wasserstein-2 distance, estimated using the Python optimal
transport (POT) library (Flamary et al., 2021).

Source Code: The Source code for RBF-Coulomb GANs is developed in TensorFlow 2.0 (Abadi et al.,
2016), and is available at the following GitHub repository: https://github.com/DarthSid95/
RBFCoulombGANs.
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