
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRAPH REGULARIZED ENCODER TRAINING FOR
EXTREME CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep extreme classification (XC) aims to train an encoder and label classifiers
to tag a data point with the most relevant subset of labels from a very large
universe of labels. XC applications in ranking, recommendation and tagging
routinely encounter tail labels, for which the amount of training data is exceedingly
small. One way to tackle the tail label problem is to use additional data - often
structured as a graph associated with documents and labels - graph metadata.
Graph Convolutional Networks (GCNs) present a convenient but computationally
expensive way to leverage this graph metadata and enhance model accuracies in
these settings. However, GCNs struggle to make predictions for a novel test point
when it has no edge in the graph. The paper notices that in these settings, it is much
more effective to use graph data to regularize encoder training than to implement a
GCN. Based on these insights, an alternative paradigm RAMEN is presented to
utilize graph metadata in XC settings that offers a significant performance boost
with zero increase in inference computational costs. RAMEN scales to datasets with
millions of labels and offers prediction accuracy up to 15% higher on benchmark
datasets than state of the art methods, including those that use graph metadata to
train GCNs. RAMEN also offers 10% higher accuracy over the best baseline on a
proprietary recommendation dataset sourced from click logs of a popular search
engine. Code for RAMEN will be released publicly upon acceptance.

1 INTRODUCTION

Extreme classification (XC) refers to a supervised machine learning paradigm where multi-label
learning must be performed on extremely large label spaces. Thus, a data point must be annotated with
a subset of labels most relevant to it. The ability of XC to handle enormous label sets with millions of
labels makes it an attractive choice for applications such as product recommendation (Medini et al.,
2019; Dahiya et al., 2021b; Mittal et al., 2022; Kharbanda et al., 2022), document tagging (Babbar
& Schölkopf, 2017; You et al., 2019; Chang et al., 2020), search & advertisement (Prabhu et al.,
2018b; Dahiya et al., 2021b; Jain et al., 2016), and query recommendation (Jain et al., 2019; Chang
et al., 2020). The key appeal of XC comes from the prospect of accurately tagging rare/tail labels
relevant to a data point. Recommendations for rare but relevant objects can meaningfully improve
user experience and the ability to associate rare tags with objects such as web documents can offer
fine-grained object descriptions. A label is called tail if very few training data points are tagged
with that label. XC applications can exhibit extreme label skew and more than 75% of the labels
could appear in fewer than 10 training points (Jain et al., 2016; Dean, 2020). The tail problem is
further aggravated due to missing labels since tail labels are also at higher risk of going missing (Jain
et al., 2016). In solving the tail-data problem, XC approaches rely on metadata. Beyond textual label
descriptions (Mittal et al., 2021a; Dahiya et al., 2021a; 2023), the auxiliary metadata can augment
the meagre supervision available for tail labels and is typically available in the form of multi-modal
descriptions such as images (Mittal et al., 2022), or graphs (Mittal et al., 2021b; Saini et al., 2021).
In this paper, we focus on graph data which can be inferred in several applications, e.g., hyperlink
graphs for document tagging and queries co-occurring in the same search session for ad placement.

Graph metadata in XC: Graph metadata has been used in XC to (a) enhance item representations,
and (b) handle missing labels. Examples of the former include OAK (Mohan et al., 2015), Graph-
Former (Yang et al., 2021), and PINA (Chien et al., 2023) which use textual descriptions of an item
along with graph metadata to learn item embeddings via graph convolutional networks (GCN). These

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

9

DOCUMENTS

LABELS

C
O

M
P

U
T

E
 SIM

ILA
R

IT
Y

 SC
O

R
E

S

METADATA GRAPH

ENCODER
<latexit sha1_base64="vUwCKtHojqXzY4wfGwBGxwZtemk=">AAAEn3icnVNZb9NAEN62AUq4WnhCvCxUkXgIVZIeHFKlSqiFpxLoiXAUrdeTeNU93N1xW9ey+DW8wu/h37BOIrWmoQ+MZHlm9ptjv9kJEykctlq/Z2bnardu35m/W793/8HDRwuLjw+cSS2HfW6ksUchcyCFhn0UKOEoscBUKOEwPH5fnh+egnXC6D3MEugpNtRiIDhD7+ovPA0Uw9hxm28V/TwIVR5gDMiKor+w1FpujYReV9oTZYlMpNtfnNNBZHiqQCOXzLmcWRRcQlEPUgcJ48dsCN8QzvFMRBhvdFpcNUszBjGMcWPF2718CEYB2qwSlTPlXKbCgjZG/VYyWjjRpldCyrNpkHxElD/xrogOjPWfRjryTivT9H+M1dRUpce6gav251Axm9mo6h0wzbPQnFcZSHHwppcLnaQImo+7GqSSoqHliGgkLHCUGWWcey5Thr5pHjPLOPpR1uvBKDbfFVHkKY77fszSnKQiVV5ViunIdzeS/yobCcat8KO7WjSIsyQGnYBmErP2ePr1xvannb13dFeKCBx9RTtrTfpla7vUWk3aNc7HemNlvd64ygugMXLESyPQcMbHTefBBVgTCZdIlrljkbgib9QblAYO/MPWQ4zzgIXmFK5ginw1weIaLARpziqwzjRYJVtsLN6AraS8xLY8trwHSxI0eaCNVUw6cQHFlPtc4vxblfJmyMAY1AbhX8n8hrb/3sfrykFnub2+vPZ5dWnz7WRX58kz8oK8JG3ymmySj6RL9gkn38kP8pP8qj2vfajt1Lpj6OzMJOYJqUjt6x8ip5Su</latexit>

E�

TEST SET
DOCUMENTS

ENCODER
<latexit sha1_base64="vUwCKtHojqXzY4wfGwBGxwZtemk=">AAAEn3icnVNZb9NAEN62AUq4WnhCvCxUkXgIVZIeHFKlSqiFpxLoiXAUrdeTeNU93N1xW9ey+DW8wu/h37BOIrWmoQ+MZHlm9ptjv9kJEykctlq/Z2bnardu35m/W793/8HDRwuLjw+cSS2HfW6ksUchcyCFhn0UKOEoscBUKOEwPH5fnh+egnXC6D3MEugpNtRiIDhD7+ovPA0Uw9hxm28V/TwIVR5gDMiKor+w1FpujYReV9oTZYlMpNtfnNNBZHiqQCOXzLmcWRRcQlEPUgcJ48dsCN8QzvFMRBhvdFpcNUszBjGMcWPF2718CEYB2qwSlTPlXKbCgjZG/VYyWjjRpldCyrNpkHxElD/xrogOjPWfRjryTivT9H+M1dRUpce6gav251Axm9mo6h0wzbPQnFcZSHHwppcLnaQImo+7GqSSoqHliGgkLHCUGWWcey5Thr5pHjPLOPpR1uvBKDbfFVHkKY77fszSnKQiVV5ViunIdzeS/yobCcat8KO7WjSIsyQGnYBmErP2ePr1xvannb13dFeKCBx9RTtrTfpla7vUWk3aNc7HemNlvd64ygugMXLESyPQcMbHTefBBVgTCZdIlrljkbgib9QblAYO/MPWQ4zzgIXmFK5ginw1weIaLARpziqwzjRYJVtsLN6AraS8xLY8trwHSxI0eaCNVUw6cQHFlPtc4vxblfJmyMAY1AbhX8n8hrb/3sfrykFnub2+vPZ5dWnz7WRX58kz8oK8JG3ymmySj6RL9gkn38kP8pP8qj2vfajt1Lpj6OzMJOYJqUjt6x8ip5Su</latexit>

E�

TEST SET
DOCUMENTS

ENCODER
<latexit sha1_base64="vUwCKtHojqXzY4wfGwBGxwZtemk=">AAAEn3icnVNZb9NAEN62AUq4WnhCvCxUkXgIVZIeHFKlSqiFpxLoiXAUrdeTeNU93N1xW9ey+DW8wu/h37BOIrWmoQ+MZHlm9ptjv9kJEykctlq/Z2bnardu35m/W793/8HDRwuLjw+cSS2HfW6ksUchcyCFhn0UKOEoscBUKOEwPH5fnh+egnXC6D3MEugpNtRiIDhD7+ovPA0Uw9hxm28V/TwIVR5gDMiKor+w1FpujYReV9oTZYlMpNtfnNNBZHiqQCOXzLmcWRRcQlEPUgcJ48dsCN8QzvFMRBhvdFpcNUszBjGMcWPF2718CEYB2qwSlTPlXKbCgjZG/VYyWjjRpldCyrNpkHxElD/xrogOjPWfRjryTivT9H+M1dRUpce6gav251Axm9mo6h0wzbPQnFcZSHHwppcLnaQImo+7GqSSoqHliGgkLHCUGWWcey5Thr5pHjPLOPpR1uvBKDbfFVHkKY77fszSnKQiVV5ViunIdzeS/yobCcat8KO7WjSIsyQGnYBmErP2ePr1xvannb13dFeKCBx9RTtrTfpla7vUWk3aNc7HemNlvd64ygugMXLESyPQcMbHTefBBVgTCZdIlrljkbgib9QblAYO/MPWQ4zzgIXmFK5ginw1weIaLARpziqwzjRYJVtsLN6AraS8xLY8trwHSxI0eaCNVUw6cQHFlPtc4vxblfJmyMAY1AbhX8n8hrb/3sfrykFnub2+vPZ5dWnz7WRX58kz8oK8JG3ymmySj6RL9gkn38kP8pP8qj2vfajt1Lpj6OzMJOYJqUjt6x8ip5Su</latexit>

E�

TEST-TIME
GRAPH TRAVERSAL

9

DOCUMENTS

LABELS

C
O

M
P

U
T

E
 SIM

ILA
R

IT
Y

 SC
O

R
E

S

METADATA GRAPH

ENCODER
<latexit sha1_base64="vUwCKtHojqXzY4wfGwBGxwZtemk=">AAAEn3icnVNZb9NAEN62AUq4WnhCvCxUkXgIVZIeHFKlSqiFpxLoiXAUrdeTeNU93N1xW9ey+DW8wu/h37BOIrWmoQ+MZHlm9ptjv9kJEykctlq/Z2bnardu35m/W793/8HDRwuLjw+cSS2HfW6ksUchcyCFhn0UKOEoscBUKOEwPH5fnh+egnXC6D3MEugpNtRiIDhD7+ovPA0Uw9hxm28V/TwIVR5gDMiKor+w1FpujYReV9oTZYlMpNtfnNNBZHiqQCOXzLmcWRRcQlEPUgcJ48dsCN8QzvFMRBhvdFpcNUszBjGMcWPF2718CEYB2qwSlTPlXKbCgjZG/VYyWjjRpldCyrNpkHxElD/xrogOjPWfRjryTivT9H+M1dRUpce6gav251Axm9mo6h0wzbPQnFcZSHHwppcLnaQImo+7GqSSoqHliGgkLHCUGWWcey5Thr5pHjPLOPpR1uvBKDbfFVHkKY77fszSnKQiVV5ViunIdzeS/yobCcat8KO7WjSIsyQGnYBmErP2ePr1xvannb13dFeKCBx9RTtrTfpla7vUWk3aNc7HemNlvd64ygugMXLESyPQcMbHTefBBVgTCZdIlrljkbgib9QblAYO/MPWQ4zzgIXmFK5ginw1weIaLARpziqwzjRYJVtsLN6AraS8xLY8trwHSxI0eaCNVUw6cQHFlPtc4vxblfJmyMAY1AbhX8n8hrb/3sfrykFnub2+vPZ5dWnz7WRX58kz8oK8JG3ymmySj6RL9gkn38kP8pP8qj2vfajt1Lpj6OzMJOYJqUjt6x8ip5Su</latexit>

E�

TEST SET
DOCUMENTS

ENCODER
<latexit sha1_base64="vUwCKtHojqXzY4wfGwBGxwZtemk=">AAAEn3icnVNZb9NAEN62AUq4WnhCvCxUkXgIVZIeHFKlSqiFpxLoiXAUrdeTeNU93N1xW9ey+DW8wu/h37BOIrWmoQ+MZHlm9ptjv9kJEykctlq/Z2bnardu35m/W793/8HDRwuLjw+cSS2HfW6ksUchcyCFhn0UKOEoscBUKOEwPH5fnh+egnXC6D3MEugpNtRiIDhD7+ovPA0Uw9hxm28V/TwIVR5gDMiKor+w1FpujYReV9oTZYlMpNtfnNNBZHiqQCOXzLmcWRRcQlEPUgcJ48dsCN8QzvFMRBhvdFpcNUszBjGMcWPF2718CEYB2qwSlTPlXKbCgjZG/VYyWjjRpldCyrNpkHxElD/xrogOjPWfRjryTivT9H+M1dRUpce6gav251Axm9mo6h0wzbPQnFcZSHHwppcLnaQImo+7GqSSoqHliGgkLHCUGWWcey5Thr5pHjPLOPpR1uvBKDbfFVHkKY77fszSnKQiVV5ViunIdzeS/yobCcat8KO7WjSIsyQGnYBmErP2ePr1xvannb13dFeKCBx9RTtrTfpla7vUWk3aNc7HemNlvd64ygugMXLESyPQcMbHTefBBVgTCZdIlrljkbgib9QblAYO/MPWQ4zzgIXmFK5ginw1weIaLARpziqwzjRYJVtsLN6AraS8xLY8trwHSxI0eaCNVUw6cQHFlPtc4vxblfJmyMAY1AbhX8n8hrb/3sfrykFnub2+vPZ5dWnz7WRX58kz8oK8JG3ymmySj6RL9gkn38kP8pP8qj2vfajt1Lpj6OzMJOYJqUjt6x8ip5Su</latexit>

E�

TEST SET
DOCUMENTS

ENCODER
<latexit sha1_base64="vUwCKtHojqXzY4wfGwBGxwZtemk=">AAAEn3icnVNZb9NAEN62AUq4WnhCvCxUkXgIVZIeHFKlSqiFpxLoiXAUrdeTeNU93N1xW9ey+DW8wu/h37BOIrWmoQ+MZHlm9ptjv9kJEykctlq/Z2bnardu35m/W793/8HDRwuLjw+cSS2HfW6ksUchcyCFhn0UKOEoscBUKOEwPH5fnh+egnXC6D3MEugpNtRiIDhD7+ovPA0Uw9hxm28V/TwIVR5gDMiKor+w1FpujYReV9oTZYlMpNtfnNNBZHiqQCOXzLmcWRRcQlEPUgcJ48dsCN8QzvFMRBhvdFpcNUszBjGMcWPF2718CEYB2qwSlTPlXKbCgjZG/VYyWjjRpldCyrNpkHxElD/xrogOjPWfRjryTivT9H+M1dRUpce6gav251Axm9mo6h0wzbPQnFcZSHHwppcLnaQImo+7GqSSoqHliGgkLHCUGWWcey5Thr5pHjPLOPpR1uvBKDbfFVHkKY77fszSnKQiVV5ViunIdzeS/yobCcat8KO7WjSIsyQGnYBmErP2ePr1xvannb13dFeKCBx9RTtrTfpla7vUWk3aNc7HemNlvd64ygugMXLESyPQcMbHTefBBVgTCZdIlrljkbgib9QblAYO/MPWQ4zzgIXmFK5ginw1weIaLARpziqwzjRYJVtsLN6AraS8xLY8trwHSxI0eaCNVUw6cQHFlPtc4vxblfJmyMAY1AbhX8n8hrb/3sfrykFnub2+vPZ5dWnz7WRX58kz8oK8JG3ymmySj6RL9gkn38kP8pP8qj2vfajt1Lpj6OzMJOYJqUjt6x8ip5Su</latexit>

E�

TEST-TIME
GRAPH TRAVERSAL

9

DOCUMENTS

LABELS

C
O

M
P

U
T

E
 SIM

ILA
R

IT
Y

 SC
O

R
E

S

METADATA GRAPH

ENCODER
<latexit sha1_base64="vUwCKtHojqXzY4wfGwBGxwZtemk=">AAAEn3icnVNZb9NAEN62AUq4WnhCvCxUkXgIVZIeHFKlSqiFpxLoiXAUrdeTeNU93N1xW9ey+DW8wu/h37BOIrWmoQ+MZHlm9ptjv9kJEykctlq/Z2bnardu35m/W793/8HDRwuLjw+cSS2HfW6ksUchcyCFhn0UKOEoscBUKOEwPH5fnh+egnXC6D3MEugpNtRiIDhD7+ovPA0Uw9hxm28V/TwIVR5gDMiKor+w1FpujYReV9oTZYlMpNtfnNNBZHiqQCOXzLmcWRRcQlEPUgcJ48dsCN8QzvFMRBhvdFpcNUszBjGMcWPF2718CEYB2qwSlTPlXKbCgjZG/VYyWjjRpldCyrNpkHxElD/xrogOjPWfRjryTivT9H+M1dRUpce6gav251Axm9mo6h0wzbPQnFcZSHHwppcLnaQImo+7GqSSoqHliGgkLHCUGWWcey5Thr5pHjPLOPpR1uvBKDbfFVHkKY77fszSnKQiVV5ViunIdzeS/yobCcat8KO7WjSIsyQGnYBmErP2ePr1xvannb13dFeKCBx9RTtrTfpla7vUWk3aNc7HemNlvd64ygugMXLESyPQcMbHTefBBVgTCZdIlrljkbgib9QblAYO/MPWQ4zzgIXmFK5ginw1weIaLARpziqwzjRYJVtsLN6AraS8xLY8trwHSxI0eaCNVUw6cQHFlPtc4vxblfJmyMAY1AbhX8n8hrb/3sfrykFnub2+vPZ5dWnz7WRX58kz8oK8JG3ymmySj6RL9gkn38kP8pP8qj2vfajt1Lpj6OzMJOYJqUjt6x8ip5Su</latexit>

E�

TEST SET
DOCUMENTS

ENCODER
<latexit sha1_base64="vUwCKtHojqXzY4wfGwBGxwZtemk=">AAAEn3icnVNZb9NAEN62AUq4WnhCvCxUkXgIVZIeHFKlSqiFpxLoiXAUrdeTeNU93N1xW9ey+DW8wu/h37BOIrWmoQ+MZHlm9ptjv9kJEykctlq/Z2bnardu35m/W793/8HDRwuLjw+cSS2HfW6ksUchcyCFhn0UKOEoscBUKOEwPH5fnh+egnXC6D3MEugpNtRiIDhD7+ovPA0Uw9hxm28V/TwIVR5gDMiKor+w1FpujYReV9oTZYlMpNtfnNNBZHiqQCOXzLmcWRRcQlEPUgcJ48dsCN8QzvFMRBhvdFpcNUszBjGMcWPF2718CEYB2qwSlTPlXKbCgjZG/VYyWjjRpldCyrNpkHxElD/xrogOjPWfRjryTivT9H+M1dRUpce6gav251Axm9mo6h0wzbPQnFcZSHHwppcLnaQImo+7GqSSoqHliGgkLHCUGWWcey5Thr5pHjPLOPpR1uvBKDbfFVHkKY77fszSnKQiVV5ViunIdzeS/yobCcat8KO7WjSIsyQGnYBmErP2ePr1xvannb13dFeKCBx9RTtrTfpla7vUWk3aNc7HemNlvd64ygugMXLESyPQcMbHTefBBVgTCZdIlrljkbgib9QblAYO/MPWQ4zzgIXmFK5ginw1weIaLARpziqwzjRYJVtsLN6AraS8xLY8trwHSxI0eaCNVUw6cQHFlPtc4vxblfJmyMAY1AbhX8n8hrb/3sfrykFnub2+vPZ5dWnz7WRX58kz8oK8JG3ymmySj6RL9gkn38kP8pP8qj2vfajt1Lpj6OzMJOYJqUjt6x8ip5Su</latexit>

E�

TEST SET
DOCUMENTS

GCN
ENCODER

<latexit sha1_base64="2SDxhna4yPau4H5qvNQe1UofFiE=">AAAEoHicnVNZT9tAEF4gbWl6AO1b+7ICRepDipJw9JCQkCoQTwXKqdZRtF5P4hV7mN0xYCxL/TV9bf9O/03XSSRwSXnoSJZnZr859pudMJHCYav1e2p6pvbg4aPZx/UnT589n5tfeHHsTGo5HHEjjT0NmQMpNByhQAmniQWmQgkn4dmn8vzkAqwTRh9ilkBXsYEWfcEZeldv/lWgGMaO23yr6OVBqPLggtkkFkXRm19qLbeGQu8q7bGyRMay11uY0UFkeKpAI5fMuZxZFFxCUQ9SBwnjZ2wA3xCu8FJEGG90Wlw1SzMGMYhxY8Xb3XwARgHarBKVM+VcpsKCNoYNVzJaONemW0LKs0mQfMiUP/GuiPaN9Z9GOvROKtP0f4zVxFSlx7q+q/bnUDGb2ajq7TPNs9BcVRlIsf++mwudpAiaj7rqp5KioeWMaCQscJQZZZx7LlOGvmkeM8s4+lnW68EwNj8QUeQpjnt+ztKcpyJVXlWK6ch3N5T/KhsJxq3wo7tdNIizJAadgGYSs/Zo+vXG9u7nw4/0QIoIHH1LO2tN+mVru9RaTbpnnI/1xsp6vXGbF0Bj5JCXRqDhko+azoNrsCYSLpEsc2cicUXeqDcoDRz4l60HGOcBC80F3MIU+WqCxR1YCNJcVmCdSbBKtthYvAdbSXmDbXlseQ+WJGjyQBurmHTiGooJ97nB+bcq5f2QvjGoDcK/kvkNbf+9j3eV485ye315bX91afPDeFdnyWuySN6QNnlHNskO2SNHhJPv5Af5SX7VFms7td3a/gg6PTWOeUkqUvv6BzQClSw=</latexit>

E�

TEST-TIME
GRAPH TRAVERSAL

(a) RAMEN (b) (c) GCN

Figure 1: RAMEN uses graph metadata to regularize encoder during training and unlike GCN
RAMEN requires no additional inference cost. (a) RAMEN training uses graph metadata to regularize
the encoder Eθ. (b) RAMEN’s encoder requires no additional information to compute an accurate
representation of the test point. (c) In GCNs, inference is a computationally expensive two stage
pipeline, where the test point is first embedded in the graph and then the linked nodes are used to
compute the final representation. RAMEN can be 2× faster, and 3-4% more accurate, than GCNs.

algorithms rely on a two stage retrieval pipeline wherein, for a novel test point, graph metadata nodes
are first retrieved and a GCN combines them with the test point. The new representation is then
used in second stage to retrieve the relevant labels. Graphs traversal can also help discover missing
labels associated with documents. For example, consider LF-WikiSeeAlsoTitles-320K where the
task is to predict related Wikipedia documents. A hyperlink graph is available which connects two
Wikipedia articles with an edge if one of them contains a hyperlink to the other. A snapshot of the
dataset in Figure 2 shows how a missing label “Crown group” can be recovered for the Wikipedia
article “Cladistics” by traversing the graph.

Limitations of GCN Methods: Graphs can also be misleading in terms of linkages, and GCN’s im-
plementation posses limited applicability for real-world application. As an example of noisy linkages
in graphs, consider the LF-WikiSeeAlsoTitles-320K hyperlink graph. Traversal over the graph can
also lead to irrelevant labels such as “Vestigial organs” and extracting meaningful information from
such noisy graphs is a challenge. Although the use of textual and graph metadata can offer enhanced
model accuracy in XC and recommendation settings (Mittal et al., 2021b; Saini et al., 2021; Yang
et al., 2021; Chien et al., 2023), the use of GCN architectures makes both training and inference more
expensive (table 3). XC training is made challenging by the sheer size of training sets often containing
millions of data points and labels, necessitating some form of negative sampling (Mikolov et al.,
2013; Guo et al., 2019; Rawat et al., 2021; Reddi et al., 2018; Xiong et al., 2021). On the other hand,
most XC applications demand real-time inference i.e., the set of labels relevant to a test data point
must be identified within milliseconds. GCNs require the (bulky) graph to be preserved at inference
time to embed a test data point which increases inference time and makes deployment challenging.
This paper addresses the limitations of using graph metadata in XC. Our primary research question
is: How do we leverage graph metadata to perform accurate prediction for rare labels with zero
increase in inference time?

1.1 OUR CONTRIBUTIONS

To address the above question, we propose gRaph regulArized encoder training for extreME classifi-
catioN (RAMEN). RAMEN is a method to effectively utilize graph metadata at scale with minimal
overheads in training cost and zero overhead in model size or inference time (Table 3). RAMEN
can be incorporated into existing XC systems in a modular manner with few alterations (Table 9).
The key insights leading to RAMEN include a formal proof (cf. Theorm 1) that (a) in several use
cases, GCN layers can be approximated by (much cheaper) non-GCN architectures and, (b) it is more
effective to use graph data to regularize encoder training than it is to implement a GCN. RAMEN can
handle multiple graphs – graphs over data points, graphs over labels, or both – and offers increased
prediction accuracy, even when presented with noisy graphs (Section 4). While the RAMEN encoder
is trained using the metadata graph, during inference, unlike baseline GCNs, RAMEN does not
require graph traversal, significantly improving latency (cf. Figure 1). RAMEN scales to datasets
with up to 360M labels and can offer up to 15% higher prediction accuracies over state-of-the-art
methods including those that use graph metadata to train GCN. Code for RAMEN will be released
publicly.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Cladistics

Common descent

Evolutionary biology

Crown group

Vestigial organs

Wiki Article

Related articleHyper link

Missing related article

Cladistics

Common descent

Evolutionary biology

Crown group

Vestigial organs

Wiki Article

Related articleHyper link

Missing related article

Figure 2: A snapshot from LF-WikiSeeAlsoTitles-320K dataset for the article on “Cladistics.” The
related article “Common descent” is tagged but the ground truth is missing the label “Crown group”.
Traversal on the hyperlink edges can help discover missing labels but can also lead to irrelevant labels
such as “Vestigial organs”.

2 RELATED WORK

Extreme classification (XC) is a key paradigm in several areas such as ranking and recommendation.
The literature on XC methods is vast (Medini et al., 2019; Dahiya et al., 2021b; Babbar & Schölkopf,
2017; You et al., 2019; Prabhu et al., 2018b; Jain et al., 2016; 2019; Guo et al., 2019; Mittal et al.,
2021a;b; Saini et al., 2021; Wydmuch et al., 2018; Zhang et al., 2018; Liu et al., 2017; Jiang et al.,
2021; Chalkidis et al., 2019; Ye et al., 2020; Zhang et al., 2021; Mineiro & Karampatziakis, 2015;
Jasinska et al., 2016; Khandagale et al., 2020; Tagami, 2017; Yen et al., 2017; Wei et al., 2019;
Siblini et al., 2018; Barezi et al., 2019; Gupta et al., 2019; 2023). Early XC methods used fixed
(bag-of-words) (Babbar & Schölkopf, 2017; Prabhu et al., 2018b; Jain et al., 2016; Mineiro &
Karampatziakis, 2015; Jasinska et al., 2016; Khandagale et al., 2020; Tagami, 2017; Yen et al.,
2017; Wei et al., 2019; Siblini et al., 2018; Barezi et al., 2019) or pre-trained (Jain et al., 2019)
features and focused on learning only a classifier architecture. Recent advances have demonstrated
significant gains by using task-specific features obtained from a variety of deep encoders such as
bag-of-embeddings (Dahiya et al., 2021b; 2023), CNNs (Liu et al., 2017), LSTMs (You et al., 2019),
and transformers (Jiang et al., 2021; Chalkidis et al., 2019; Ye et al., 2020; Zhang et al., 2021).
Training is scaled to millions of labels and training points (Dahiya et al., 2021b) by performing
encoder pre-training followed by classifier training. A data point is trained only on its relevant labels
(that are usually few in number) and a select few irrelevant labels deemed most informative using
negative mining (Mikolov et al., 2013; Guo et al., 2019; Xiong et al., 2021; Dahiya et al., 2021a;
2023; Faghri et al., 2018; Chen et al., 2020; He et al., 2020a; Karpukhin et al., 2020; Lee et al., 2019;
Luan et al., 2020; Hofstätter et al., 2021; Qu et al., 2021).

Label Metadata in XC: Most XC methods use textual representation as label metadata since they
allow scalable training and inference and allow leveraging good-quality pre-trained deep encoders
such as RoBERTa (Liu et al., 2019b), DistilBERT base (Sanh et al., 2019), etc. Examples in-
clude encoder-only models such as DEXML (Gupta et al., 2024), TwinBERT (Lu et al., 2020) and
ANCE (Xiong et al., 2021) and encoder+classifier architectures such as DECAF (Mittal et al., 2021a),
SiameseXML (Dahiya et al., 2021a), X-Transformer (Chang et al., 2019), XR-Transformer (Chang
et al., 2020), LightXML (Jiang et al., 2021), ELIAS (Zhang et al., 2021) and others (Ye et al., 2020;
Liu et al., 2019a; You et al., 2019; Chalkidis et al., 2019). There is far less literature on the use of
other forms of label metadata. For instance, ECLARE (Mittal et al., 2021b) and GalaxC (Saini et al.,
2021) use graph convolutional networks whereas MUFIN (Mittal et al., 2022) explores multi-modal
label metadata in the form of textual and visual descriptors for labels.

Graph Neural Networks in Related Areas: A sizeable body of work exists on using graph neural
networks such as graph convolutional networks (GCN) for recommendation (Yang et al., 2021; Mohan
et al., 2015; Hamilton et al., 2018; Chen et al., 2018; Zou et al., 2019; Huang et al., 2018; Chiang
et al., 2019; Zeng et al., 2020; Zhu et al., 2021; He et al., 2020b; Yang et al., 2022). Certain methods
e.g., FastGCN (Chen et al., 2018), KGCL (Yang et al., 2022), LightGCN (He et al., 2020b) learn
item embeddings as (functions of) free vectors. This makes them unsuitable for making prediction
for a novel test point. Other GCN-based methods such as OAK (Mohan et al., 2015), PINA (Chien
et al., 2023), GraphSAGE (Hamilton et al., 2018) and GraphFormers (Yang et al., 2021) learn node
representations as functions of node metadata e.g. textual descriptions. This allows the methods
to work in zero-shot settings but they still incur the high storage and computational cost of GCNs.
Moreover, diminishing returns are observed with increasing number of layers of the GCN (Mittal
et al., 2021b; Chiang et al., 2019) with at least one model, namely LightGCN (He et al., 2020b)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

foregoing all non-linearities in its network, effectively opting for a single-layer GCN. It must be
noted that GCN’s can be highly accurate if one can have an oracle to predict relevant nodes(table 2).
However, such oracle is never available online and the slightest error in first stage retrieval leads to
poor retrieval quality. (sec. 4).

We now develop the RAMEN method that offers a far more scalable alternative to GCNs and other
popular graph-based architectures in XC settings, significantly reducing the overheads of graph-based
learning, yet offering sustained and significant performance boosts in prediction accuracies.

3 RAMEN: GRAPH REGULARIZED ENCODER TRAINING FOR EXTREME
CLASSIFICATION

Notation: Let L be the total number of labels in the application. Note that the label set remains
same across training and testing. Let xi, zl be the textual descriptions of the data point i and label l
respectively. For each data point i ∈ [N], its ground truth label vector is yi ∈ {−1,+1}L, where
yil = +1 if label l is relevant to the data point i and otherwise yil = −1. The training set is comprised
of N labeled data points and L labels as D := {{xi,yi}Ni=1, {zl}Ll=1}. Let X def

= {xi}Ni=1 denote

the set of training data points and Z def
= {zl}Ll=1 denote the set of labels. The meta-data graph over

the auxiliary sets A (hyper-links, co-bidded queries) is denoted by GXA and GZA for data point
(document) and label respectively.

Metadata Graphs: RAMEN obtains metadata graphs over Anchor Sets. Let A = {a1,a2, . . . ,aM}
denote an anchor set of M elements e.g. hyperlink and category for LF-WikiSeeAlsoTitles-320K
dataset. We abuse notation to let am denote the textual representation of anchor item m ∈ [M] as
well. Two distinct types of metadata graphs are possible over an anchor set:

1. Datapoint-anchor set: This is denoted as GXA = (VXA, EXA) with VXA
def
= X ∪ A i.e., the

union of training data points and anchor points. The matrix EXA = {eim} ∈ {0, 1}N×M encodes
whether data point xi has an edge to to anchor item am or not.

2. Label-anchor set: This is denoted as GZA = (VZA, EZA) with VZA
def
= Z ∪A i.e. the union of

labels and anchor points. The matrix EZA = {elm} ∈ {0, 1}L×M encodes whether label zl has
an edge to anchor item am or not.

We refer the reader to Section 4 for details of how the metadata graphs are constructed using random
walks. RAMEN can work with multiple anchor sets as well. For instance, given two anchor sets
A1 =

{
a11,a

1
2, . . . ,a

1
M1

}
and A2 =

{
a21,a

2
2, . . . ,a

2
M2

}
, a total of 4 meta data graphs are possible.

Intuition behind RAMEN: A popular way to incorporate graph information into XC and rec-
ommendation tasks is to take initial embeddings of a data point from an encoder and use a
graph convolution step to obtain augmented embeddings for the data point. For example, let
X ∈ RN×D = [x1, . . . ,xN]⊤ be the initial embeddings of the N data points over which a graph
with adjacency matrix A ∈ [0, 1]N×N is present. A typical layer in a GCN performs an operation
of the form ϕ(AXW) ∈ RN×D where W ∈ RD×D is a transformation matrix and ϕ : R → R is
some activation function applied coordinate-wise. Not only is this step expensive (Zeng et al., 2020;
Hamilton et al., 2018), but also offers diminishing returns with increasing number of layers (Chiang
et al., 2019; Mittal et al., 2021b). Theorem 1 indicates that in cases where the adjacency matrix can
be well-predicted using a non-GCN network (say feedforward or transformer) over the initial features,
the convolutional layer can be well approximated by a non-GCN network as well. Note that edge
prediction is often possible with high accuracy since the metadata graph available is closely linked to
the prediction task at hand and Table 6 confirms this for the tasks considered in this paper. RAMEN
uses this result to infer that it may be less useful to perform graph convolutions on top of a reasonably
powerful encoder such as a transformer. Instead, utilizing the graph for regularization is cheaper yet
effective. Theorem 1 is specified and proved in Appendix E. Extensions of Theorem 1 to networks
with multiple GCN layers are also discussed.
Theorem 1 (Informal). Let there exist a non-GCN (e.g. feedforward, transformer etc) network F :
X → SP−1 where SP−1 is the the unit sphere in RP , that effectively predicts edges in the metadata
graph for any i, j ∈ [N], aij ≈ (1+F(xi)

⊤F(xj))/2 where A = [aij] is the adjacency matrix of the
graph, then there exists another non-GCN network H such that ϕ(AXW) ≈ [H(x1), . . . ,H(xN)]⊤.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Regularization Framework: RAMEN’s training (Figure 1) consists of two main components: (a)
Any XC or dense retrieval method (M), comprising an encoder block (Eθθθ), and (b) The metadata
graph (Ac). The encoder Eθθθ : X → SD−1 with trainable parameters θθθ is used to embed data points
and labels using their textual descriptions. SD−1 denotes the D-dimensional unit sphere, i.e., the
encoder provides unit-norm embeddings (unless stated otherwise). For the sake of brevity, we use E(·)
to denote the encoder. RAMEN uses a DistilBERT (Sanh et al., 2019) encoder as E and regularizes
using the proposed training approach to learn robust and accuracy embedding representation.

Metadata Graph Regularizers: Given an anchor set A and graphs GXA,GZA, we define the
following two regularization functions over the encoder parameters:

Rx(θθθ) =
N∑
i=1

∑
p:eip=1
n:ein=0

[Eθθθ(xi)
⊤Eθθθ(an)− Eθθθ(xi)

⊤Eθθθ(ap) + γ]+ (1)

Rz(θθθ) =
L∑

l=1

∑
p:elp=1
n:eln=0

[Eθθθ(zl)⊤Eθθθ(an)− Eθθθ(zl)⊤Eθθθ(ap) + γ]+ (2)

Here, p is the positive anchor and n are in-batch negatives anchors (explained in later section). Note
that these two regularizers encourage the encoder to keep data points and labels closely embedded
to their related anchor points and far away from unrelated anchor points. If we have more than one
anchor set, say A1,A2, we can define corresponding regularizers Rt

x(θθθ),Rt
z(θθθ), t=1, 2.

RAMEN Training: RAMEN performs regularization of the encoder for any M. The encoder
is trained using document-label loss (L(θθθ)) regularized using two components: a) Anchor set on
document side (Rx(θθθ)), and b) Anchor sent on label side (Rz(θθθ)), as discussed in the previous
section. The L(θθθ) function takes the following formulation:

L(θθθ) =
N∑
i=1

∑
l:yil=+1
k:yik=−1

[Eθθθ(zk)⊤Eθθθ(xi)− Eθθθ(zl)⊤Eθθθ(xi) + γ]+,

Note that this loss function encourages the encoder to embed a data point close to its relevant labels
and far from irrelevant ones. The encoder is trained by minimizing the following regularized objective

min
θθθ

{
λl · L(θθθ) +

T∑
t=1

(λt
x · Rt

x(θθθ) + λt
z · Rt

z(θθθ))
}

where λl, λ
t
x, λ

t
z are regularization constants that are estimated using a bandit optimization strategy

described below. This step can accommodate multiple anchor sets as well as regularizers. Once the
regularized encoder training is complete for M, the trained encoder can subsequently be used to train
subsequent modules in M, if present. For instance, XC approaches further train a per-label classifier.

Bandit Learning for Regularization Constants: The gradient descent without a gradient ap-
proach (Flaxman et al., 2005) was adopted to tune the regularization constants λl, λt,x, λt,z in an
online manner. λl was initialized to 1 and λt,x, λt,z to 0.1. Below we describe the process for a single
constant λ and the same is independently replicated for all the constants.

After every 30 iterations, the value of lambda is perturbed as λ̂ = λ + z, z ∼ N (0, 0.01), where
N (0, 0.01) denotes a unidimensional Gaussian with zero mean and variance 0.01. Subsequently, λ̂ is
used as the regularization constant in the loss expression for the next 30 iterations. The mini-batch
objective values (λl · L+

∑
t=1,2(λ

t
x · Rt

x + λt
z · Rt

z)) incurred in these 30 iterations are calculated
as P , and λ is updated by using the estimated gradient as follows

λ = λ− η · P

λ̂− λ
,

where η is a learning rate. This is justified by a simple but surprising application of Stokes the-
orem (Flaxman et al., 2005), which states that for any function f : R → R (which can itself
be non-convex or even non-differentiable), we have df̂(x)

dx = 1
δ · E

u∼{−1,+1}
[f(x+ δu)u] where

f̂ : R → R is a smoothed version of f defined as f̂(x) def
= E

v∼[−1,1]
[f(x+ δv)]. Note f̂ is always

differentiable even if f is not. In order to compute the mini-batch objectives, P , RAMEN mines hard
negatives. The negative mining technique is explained below.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Negative Mining: The loss function and regularizers contain O (NL logL+ (N + L)M logM)
terms where M = max {M1,M2} is the maximum number of anchors in any of the anchor sets. This
is because the number of relevant labels per data point is usually limited by |l : yil = +1| ≤ O (logL)
in XC applications (Jain et al., 2016) and we can construct the metadata graphs to have at most logM
relevant anchors per data point or label. Performing optimization with respect to all these terms is
expensive which is why RAMEN utilizes in-batch negative mining (Guo et al., 2019; Dahiya et al.,
2021a; 2023; Faghri et al., 2018; Chen et al., 2020; He et al., 2020a). Specifically, a set of data
points is identified and for each data point, and a random relevant label and random related anchor
are chosen (from each anchor set if there are multiple anchor sets). For each of the chosen labels, a
random related anchor is chosen from each anchor set. Then, hard negative labels for a data point are
chosen only amongst those labels selected for that particular mini-batch. Similarly, hard negative
anchors for a data point or label are chosen from only those anchors selected for that mini-batch.

Inference with RAMEN: RAMEN’s training framework is applied to the encoder in the base model
(M). Once training is complete, inference remains unchanged from the base model’s proposed
approach. Here, RAMEN incurs no additional inference time over the base method and improves
accuracy by 2-3% in P@1.

4 EXPERIMENTS

The XML Repository (Bhatia et al., 2016) provides various public XC datasets which are thoroughly
studied and benchmarked by plethora of papers. These datasets are curated from Wiki dumps link
and Amazon dump (Ni et al., 2019) but graph metadata, which was readily available, was ignored.
For RAMEN, we crawl these dumps and curate metadata for all public datasets as follows:

LF-WikiSeeAlsoTitles-320K: The dataset was curated from Wiki dump link. The scenario involved
recommending related articles. Articles under the “See Also” section were used as ground truth
labels. Internal hyperlinks and category links were used to create two sets of metadata graphs, one
using hyperlinked Wikipedia articles as anchors and the other using Wikipedia categories as anchors.

LF-WikiTitles-500K: The dataset was also curated from Wiki dump link. The scenario involved
recommending relevant “categories” for an article. Internal hyperlinks and category-to-category links
were used to create two sets of metadata graphs as described above.

LF-AmazonTitles-1.3M: The dataset was curated from Amazon dump (Ni et al., 2019). The scenario
involved recommending relevant “products” for a product. The “similar_items” links given in the
data dump were used to create the metadata graph.

Dataset: Please refer to Tab. 15 of the appendix for dataset statistics. For all datasets, test data points
were removed from the graph if present as nodes to prevent train-test leaks.

Implementation details: We initialize the encoder with a pre-trained DistilBERT and fine-tune it.
The metadata graphs are pruned using the fine-tuned encoder. Table 16 in the appendix summarizes all
hyper-parameters for each dataset. It is notable that even though RAMEN uses a graph at training time,
inference does not require any such information, making it highly suitable for long-tail queries. We
compare three variants of RAMEN against baseline XC and dense retrieval approaches. In particular,
we consider RAMEN (ANCE), RAMEN (NGAME) and RAMEN (DEXML). All RAMEN variants
and most baseline variants use the PyTorch (Paszke et al., 2017) framework and were trained on 4
Nvidia V100 GPUs. DEXML (Gupta et al., 2023) was trained on 16 Nvidia A100 GPUs. Refer to
Appendix B for additional details.

Results on benchmark datasets: Table 1 compares RAMEN variants with graph and XC methods.
RAMEN is 5% more accurate over the best baseline numbers. In particular RAMEN is 2-3% more
accurate than traditional graph-based methods. Additionally, the RAMEN variants are 3-4% more
accurate over OAK (Mohan et al., 2015) & PINA (Chien et al., 2023), which use both XC and graph
metadata. RAMEN’s primary focus is short-text documents but for results on full text datasets refer
to Table 14 in appendix.

Analysis of gains: Note that, Theorem 1 states that RAMEN and GCNs are equivalent. However, as
discussed in Limitation of GCN Methods in the introduction, GCN’s two stage retrieval pipeline can
be noisy. Table 2 demonstrates that if we replace the first stage with the oracle linker (first statge with
zero error), the performance of these graph-based methods starts to outperform RAMEN variants.

6

https://dumps.wikimedia.org/enwiki/20220520/
https://dumps.wikimedia.org/enwiki/20220520/
https://dumps.wikimedia.org/enwiki/20220520/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Results on short-text benchmark datasets. RAMEN variants is up to 15% more accurate as
compared to both text-based and graph-based baselines. For details on evaluation metrics, please
refer to section D in appendix.

PSP@1 PSP@3 PSP@5 PSN@3 PSN@5 P@1 P@3 P@5 N@3 N@5
LF-AmazonTitles-1.3M

RAMEN (ANCE) 37.0 40.0 41.2 39.3 40.5 48.7 42.9 38.4 47.3 46.3
RAMEN (NGAME) 34.3 37.4 39.0 36.9 38.4 55.6 49.7 44.9 54.3 53.3
RAMEN (DEXML) 31.2 34.7 36.7 34.2 36.1 58.8 51.1 45.8 56.1 54.6
GraphSage 24.5 24.2 23.7 24.7 24.9 28.1 21.4 17.6 24.8 23.2
GraphFormer 22.5 22.4 22.5 22.6 23.1 24.2 17.4 14.3 21.6 20.8

DEXML - - 36.6 - - 58.6 50.9 45.6 55.9 54.4
NGAME 29.2 33.0 35.4 32.1 33.9 56.7 49.2 44.1 53.8 52.4
DEXA 29.1 32.7 34.9 32.0 33.9 56.6 49.0 43.9 53.8 52.4
ANCE 33.1 35.6 36.8 - - 45.8 39.9 35.5 - -
CascadeXML 17.2 21.7 24.8 19.9 21.5 47.8 42.0 38.3 45.0 43.8
XR-Transformer 20.1 24.8 27.8 23.4 25.4 50.1 44.1 40.0 47.7 46.6
PINA - - - - - 55.8 48.7 43.9 - -
AttentionXML 16.0 19.9 22.5 18.2 19.6 45.0 39.7 36.2 42.4 41.2
SiameseXML 27.1 30.4 32.5 29.4 30.9 49.0 42.7 38.5 46.4 45.1
ECLARE 23.4 27.9 30.6 26.7 28.6 50.1 44.1 40.0 47.7 46.7

LF-WikiTitles-500K

RAMEN (ANCE) 30.5 26.9 25.7 30.0 31.4 46.1 25.4 17.4 35.4 33.8
RAMEN (NGAME) 30.1 27.4 26.4 30.2 31.7 48.2 27.4 19.0 37.6 35.9
OAK 25.7 25.8 25.0 27.8 29.4 44.8 25.9 17.9 35.4 33.8
GraphSage 22.3 19.3 19.1 22.1 23.8 27.2 15.7 11.3 22.6 22.8
GraphFormer 22.0 19.2 19.5 21.3 22.8 24.5 14.9 11.3 20.2 20.3

NGAME 23.1 23.3 23.0 25.3 27.2 39.0 23.1 16.1 31.8 30.7
ANCE 23.2 22.1 21.2 24.5 26.1 29.7 18.1 12.5 25.4 25.1
CascadeXML 19.2 19.5 19.7 20.8 22.3 47.3 26.8 19.0 36.2 34.4
AttentionXML 14.8 14.0 13.9 15.2 16.2 40.9 21.5 15.0 29.4 27.4
ECLARE 21.6 20.4 19.8 22.4 23.6 44.4 24.3 16.9 33.3 31.5

LF-WikiSeeAlsoTitles-320K

RAMEN (ANCE) 29.0 31.8 34.5 31.7 33.6 35.2 24.0 18.4 35.2 36.5
RAMEN (NGAME) 28.6 31.6 34.4 31.5 33.5 35.5 24.3 18.6 35.6 36.8
OAK 25.8 28.5 30.8 28.6 30.3 33.7 22.7 17.1 33.4 34.4
GraphSage 21.6 21.8 23.5 22.9 24.6 27.3 17.2 13.0 27.1 28.4
GraphFormer 19.2 20.6 22.7 21.0 22.7 21.9 15.1 11.8 22.6 24.0

NGAME 24.4 27.4 29.9 27.4 29.2 32.6 22.0 16.6 32.3 33.2
DEXA 24.4 26.5 28.6 27.0 28.6 31.7 21.0 15.8 31.3 32.3
DEXML 22.8 23.9 25.7 25.1 26.7 29.9 19.7 14.8 29.7 30.7
ANCE 25.1 26.8 28.7 27.3 28.9 30.8 20.3 15.4 30.5 31.5
ELIAS 13.5 15.9 17.7 15.6 16.8 23.4 15.6 11.8 22.9 23.6
CascadeXML 12.7 15.4 17.6 14.6 16.0 23.4 15.7 12.1 22.6 23.4
XR-Transformer 10.6 11.8 12.7 11.7 12.4 19.4 12.2 9.0 18.3 18.5
AttentionXML 9.4 10.6 11.7 10.4 11.2 17.6 11.3 8.5 16.6 17.1
SiameseXML 26.8 28.4 30.4 28.7 30.3 32.0 21.4 16.2 31.6 32.6
ECLARE 22.0 24.2 26.3 24.5 26.0 29.3 19.8 15.0 29.2 30.2

Table 2: Results using Oracle Linker for GCN
Vs RAMEN (ANCE) on LF-WikiSeeAlsoTitles-
320K.

Method P@1 P@5 N@5 PSP@1 PSP@5
RAMEN (ANCE) 35.2 18.4 35.2 29.0 34.5
OAK 33.7 17.1 34.4 25.8 30.8
OAK + Oracle 38.9 19.4 40.4 29.7 34.8

Table 3: RAMEN (ANCE)’s computational
relative to baselines on LF-WikiSeeAlsoTitles-
320K.

Method Train Time Pred Time Model size P@1
RAMEN (ANCE) 1× 1× 1× 35.2
OAK 1.5× 2× 3.5× 33.7
ANCE 0.9× 1× 1× 30.8
DEXML 2.1× 1× 1× 29.9

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

complete
(#501K)

5
(#375K)
(4.58)

4
(#84K)
(20.28)

3
(#30K)
(55.89)

2
(#9K)

(187.30)

1
(#1K)

(1425.79)
Quantiles

 (Increasing Freq.)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

P@
5

LF-WikiTitles-500K
RAMEN
OAK
NGAME

Table 4: Quantile wise-comparison of RAMEN
and other methods. RAMEN (NGAME) gives
consistent gains in each bin (see Appendix D for
binning details). The left-most bin contains the
most rare/tail labels whereas the rightmost bin
contains the most popular/head labels.

Table 5: Ablations were done using ANCE
as base algorithm (RAMEN (ANCE)) on LF-
WikiSeeAlsoTitles-320K to understand the im-
pact of design choices on the quality of encoder
training. RAMEN (ANCE)’s design choices are
seen to be optimal and offer 2.5–13% improve-
ment in the P@1 metric over alternate design
choices.

RAMEN P@1 P@3 P@5 N@3 N@5
RAMEN (ANCE) 35.2 24.1 18.3 35.3 36.5

− No Bandits 20.9 12.8 9.5 21.5 22.5
− No Pruning 31.3 18.9 12.8 31.43 31.5
− No Doc. Graph 29.7 17.5 12.5 30.7 30.8
− No Lbl. Graph 34.1 22.7 14.6 32.0 34.1
AugGT 15.6 8.9 6.5 15.7 16.3

graph-init=0.1 35.2 24.1 18.4 35.3 36.5
graph-init=0.5 34.5 24.4 19.3 35.2 36.4
graph-init=1.0 34.8 24.8 17.7 36.2 35.6

Table 6: RAMEN (ANCE)’s encoder E can pre-
dict links in the meta-data graph with high recall
(R@100).

Link type LF-WikiSeeAlsoTitles-320K LF-WikiTitles-500K

hyper_link 99.88 94.20
category 99.88 99.96

Table 7: RAMEN (ANCE)’s performance on P
and PSP decreases as the volume of metadata
decreases for LF-WikiSeeAlsoTitles-320K

RAMEN (ANCE) PSP@1 PSP@5 P@1 P@5
100% 29.0 34.5 35.2 18.4

50% 26.4 31.1 33.8 17.7
20% 25.8 30.1 33.1 17.1

Table 8: Comparing the difference in false negative rates between RAMEN (ANCE) and OAK on
LF-WikiSeeAlsoTitles-320K. Results are presented quantile wise. The #5K label quantile contains
the most popular/head labels whereas the #729K quantile contains the most rare/tail labels. See
Appendix D for definitions of metrics and quantiles. RAMEN (ANCE)’s false negative rate is always
superior to that of OAK but the gap widens significantly when compared on tail labels.

Quantile
(#L) Avg. Doc. DIFF@5 DIFF@10 DIFF@20 DIFF@50 DIFF@100

(#1K) 200.78 -0.019 -0.026 -0.027 -0.021 -0.010
(#9K) 30.98 0.013 -0.050 -0.107 -0.123 -0.049
(#31K) 9.14 0.036 -0.124 -0.272 -0.443 -0.423
(#74K) 3.94 -0.455 -0.757 -1.091 -1.551 -1.854
(#195K) 1.49 -2.246 -2.722 -3.529 -4.763 -6.075

complete -2.671 -3.679 -5.025 -6.901 -8.411

Table 9: Results of RAMEN as a regularizer in
baseline algorithms on LF-WikiSeeAlsoTitles-
320K. RAMEN’s regularization algorithm im-
proves the respective performance by 2–3%.

P@1 P@3 P@5 N@3 N@5
ANCE 30.8 20.3 15.4 30.5 31.5
RAMEN (ANCE) 35.2 24.1 18.3 35.3 36.5

NGAME 32.6 22.0 16.6 32.3 33.2
RAMEN (NGAME) 35.5 24.3 18.6 35.6 36.8

SiameseXML 31.9 21.4 16.2 31.6 32.6
RAMEN (SiameseXML) 32.0 21.9 17.6 31.7 32.9

ECLARE 29.4 19.8 15.1 29.2 30.2
RAMEN (ECLARE) 30.5 20.1 16.4 32.3 32.8

Table 10: Impact of different graph metata on
RAMEN (ANCE)’s performance

Method P@1 P@5 N@5 PSP@1 PSP@5 PSN@5
RAMEN (ANCE) 35.2 18.4 36.5 29.0 34.5 33.6
Only category 33.7 17.4 34.4 27.6 32.7 31.7
Only hyperlink 34.2 17.6 35.0 27.8 32.7 32.0

Table 11: Results on the proprietary dataset (G-
EPM-1M). RAMEN (Method-1) is ≈10% more
accurate than the leading method in production.

PSP@1 PSP@3 P@1 P@5 R@10
RAMEN (Method-1) 25.1 47.2 25.2 9.8 55.9
Method-1 16.2 31.5 15.1 6.3 37.2

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 12: RAMEN (ANCE)’s performance in zero shot scenario

Method P@1 P@3 P@5 N@3 N@5
LF-WikiSeeAlsoTitles-320K

RAMEN (ANCE) 14.8 10.2 7.3 19.8 21.4
ANCE 12.1 8.5 6.06 16.3 17.6

LF-WikiTitles-500K

RAMEN (ANCE) 11.4 5.3 3.5 12.1 12.5
ANCE 10.9 5.1 3.5 11.4 11.9

Table 13: A subjective comparison of predictions made by RAMEN, the leading text-based method
NGAME, and the leading graph-based method GraphFormers on LF-WikiSeeAlsoTitles-320K. Labels
that are a part of the ground truth are formatted in black color. Labels not a part of the ground truth
are formatted in light gray color. Relevant labels that are missing from the ground truth are marked
in bold black. RAMEN (ANCE) could make predict highly relevant labels such as “Crown group”,
which were missing from the ground truth as well as omitted by other methods.

Method Prediction
Document: Clade

RAMEN (ANCE) Cladistics, Phylogenetics, Crown group, Paraphyly, Polyphyly

ANCE Cladistics, Linnaean taxonomy, Polyphyly, Paragroup, Molecular
phylogenetics

OAK Phylogenetic nomenclature, Molecular phylogenetics, Haplotype,
Cladistics, Paragroup

However, this oracle linker is never available for a novel test point, and RAMEN variants achieved
a similar performance in a fraction of the cost of training and prediction time as shown in Table 3.
Additionally RAMEN variants can predict meta-data graph links with high accuracy (Table 6) which
validates the proposed Theorem 1. Furthermore, Figure 4 shows that RAMEN variants outperform
baseline methods in each quantile, showing its overall superior embedding quality. To demonstrate
the zero-shot performance of RAMEN, we consider RAMEN (ANCE), since it is a dense retrieval
approach. RAMEN (ANCE) achieves state of the art performance in the zero-shot scenario (cf.
Table 12) indicating that RAMEN (ANCE)’s embeddings are robust to unseen labels. While RAMEN
variants outperform baseline methods on all datasets, the low gains in LF-AmazonTitles-1.3M can
be attributed to the low volume of metadata (“similar_items” graph edges) available for training
(cd. Table 15 in the appendix). To validate this, experiments on the LF-WikiSeeAlsoTitles-320K
dataset were conducted where it was observed that reducing metadata to 50% and 20% resulted in
performance drops of 1–2.5% in PSP and 3–4% in P, respectively. This emphasizes the importance of
metadata for performance (Table 7).

Table 13 shows that RAMEN (ANCE) could make predictions such as “Crown group” which were
missing labels in the training data, by exploiting metadata graph links. Apart from standard metrics,
the error rate plays a crucial role in deployment. Tab. 8 compares the difference in RAMEN (ANCE)’s
false negative rate (FN@k) with the best-performing baseline (OAK) when each method was allowed
to make k predictions i.e., Diff@k

def
= FN@k(RAMEN) - FN@k(OAK). It is notable that RAMEN

(ANCE) consistently outperforms OAK over all label quantiles (i.e. over head/popular as well as
tail/rare labels) and performs even better at higher values of k such as k = 50.

Case-study for Sponsored Search: Matching user queries with relevant advertiser keywords is a
critical component of sponsored search. One type of matching is Extended Phrase Match (EPM),
which aims to match a user query with advertiser keywords that have a subset of the query’s intent.
This means that only keywords with similar intent to the query are considered. For example, for
the query "cheap nike shoes", a valid EPM keyword is "nike sneakers" but "adidas shoes" or "nike
shorts" are not.

We study the effectiveness of RAMEN (Method-1) in this application by comparing it against the
state-of-the-art encoder in production (anonymised as Method-1) and also conducting A/B test on live

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

search-engine traffic. For offline comparison, the G-EPM-1M dataset was curated by analyzing the
ad click logs. Further, the click logs were mined to gather graph metadata for RAMEN (Method-1),
including two types of signals:

1. Co-session queries: Queries that were asked in the same search session by multiple users.
2. Co-clicked queries: Queries that resulted in clicks on the same webpage.

RAMEN (Method-1) was found to be 3% better on the P@5 than Method-1. RAMEN (Method-1)
was further found to be 15% better than Method-1 on the propensity scored PSP@5, indicating that
RAMEN (Method-1) could match tail keywords more accurately. Please refer to Table 11. The
quality of the two models was further measured using an in-production, large cross-encoder oracle
quality model that was trained on an extensive set of manually labeled data. The oracle quality model
found predictions made by RAMEN (Method-1) to be 43% more accurate than those by Method-1.

RAMEN (Method-1) was trained on a dataset containing 540M training documents and 360M labels
mined as described above but over a longer period to conduct an A/B test on the search engine.
RAMEN (Method-1) was found to increase the Impression-Yield(relevant ad impressions per user
query) by 2.8% and the Click-Yield(clicks per user query) by 2.5% when compared against a control
containing state-of-the-art embedding-based, generative, GCN, and XC algorithms.

Ablations on the Design: Experiments were conducted to understand the impact of the design
choices made by RAMEN (ANCE) as well as the impact of metadata on the performance of RAMEN
(ANCE). Table 5 complies these experiments. In particular, experiment “No-Bandits” explored
the effects of different choices of giving weights to different sources of metadata on RAMEN’s
performance. A key finding was that when uniform weights were assigned to all graphs, there was a
substantial 18% drop in P@1. In addition to that, similarly accuracy of RAMEN (ANCE) for different
initialization of graph weights proved robustness of bandit learning. This highlights the importance
of bandit learning, where each graph’s contribution is determined dynamically. RAMEN (ANCE)’s
robust training strategy extends benefits beyond its own performance. NGAME, SiameseXML and
ECLARE, baseline methods, experienced improvements of 3% and 5% in P@1, respectively, when
leveraging RAMEN (ANCE)’s metadata regularizer. (Table 9).

Ablations on the Graph: To understand the impact of noisy edges in metadata, experiment "No
Pruning" disabled the trimming of noisy edges using cosine similarity filtering. A 4% loss in P@1
was observed which underscores the necessity of pruning unhelpful edges during training. RAMEN
(ANCE) uses multiple meta-data graphs for both document and label. To ascertain the contributions
of the anchor-doc and anchor-label metadata graphs, the ablations "No Doc. Graph" and "No Lbl.
Graph" were conducted. These experiments reveal that information from these graphs plays a
significant role, as disabling either leads to a 1.5–2% reduction in P@1. The information from these
graphs can be incorporated in baseline methods like ANCE. To understand its impact, experiment
“AugGT’ trains ANCE with augmented ground truth. The ground truth was expanded by using label
propagation wherein a label and a training point are linked by an edge if the label shares a neighbor
in the metadata graph of the said training point. RAMEN (ANCE) outperformed the “AugGT” setup
by 15%. This suggests that while leveraging graph information for ground truth enhancement is
convenient, it may not be as effective due to noisy edges. RAMEN (ANCE) uses multiple sources of
graph metadata, Table 10 in appendix shows the RAMEN (ANCE) benefits when all graph metadata
is used but remains state of the art even if it uses only hyperlink metadata, similar to OAK. For more
experimental details refer to Appendix A.

5 CONCLUSION

This paper presented RAMEN, a novel approach for leveraging metadata to enhance the accuracy of
recommendation systems w.r.t. tail labels. A key takeaway from the study is that opting for graph-
based regularization instead of the more prevalent GCN architectures, can yield gains of up to 15% in
PSP@1/P@1 and up to 6% when compared with XC techniques tailored for recommendation systems.
The bandit-style regularization technique adopted by RAMEN was found to offer performance boosts
to baseline methods. Notably, RAMEN offers state-of-the-art performance without incurring any
computational overhead during inference.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

R. Babbar and B. Schölkopf. DiSMEC: Distributed Sparse Machines for Extreme Multi-label
Classification. In WSDM, 2017.

R. Babbar and B. Schölkopf. Data scarcity, robustness and extreme multi-label classification. ML,
2019.

E. J. Barezi, I. D. W., P. Fung, and H. R. Rabiee. A Submodular Feature-Aware Framework for Label
Subset Selection in Extreme Classification Problems. In NAACL, 2019.

K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, and M. Varma. The Extreme Classification
Repository: Multi-label Datasets & Code, 2016. URL http://manikvarma.org/downloads/XC/
XMLRepository.html.

I. Chalkidis, M. Fergadiotis, P. Malakasiotis, N. Aletras, and I. Androutsopoulos. Extreme Multi-
Label Legal Text Classification: A case study in EU Legislation. In ACL, 2019.

C. .W. Chang, H. F. Yu, K. Zhong, Y. Yang, and I. S. Dhillon. A Modular Deep Learning Approach
for Extreme Multi-label Text Classification. CoRR, 2019.

W.-C. Chang, Yu H.-F., K. Zhong, Y. Yang, and I.-S. Dhillon. Taming Pretrained Transformers for
Extreme Multi-label Text Classification. In KDD, 2020.

J. Chen, T. Ma, and C. Xiao. FastGCN: Fast Learning with Graph Convolutional Networks via
Importance Sampling. In ICLR, 2018.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of
visual representations. In ICML, 2020.

W. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C. Hsieh. Cluster-GCN: An Efficient Algorithm for
Training Deep and Large Graph Convolutional Networks. In KDD, 2019.

E. Chien, J. Zhang, C. Hsieh, J. Jiang, W. Chang, O. Milenkovic, and H. Yu. PINA: Leveraging side
information in eXtreme multi-label classification via predicted instance neighborhood aggregation.
In ICML, 2023.

K. Dahiya, A. Agarwal, D. Saini, K. Gururaj, J. Jiao, A. Singh, S. Agarwal, P. Kar, and M. Varma.
SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels. In ICML, 2021a.

K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave, A. Soni, H. Jain, S. Agarwal, and M. Varma.
DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents.
In WSDM, 2021b.

K. Dahiya, N. Gupta, D. Saini, A. Soni, Y. Wang, K. Dave, J. Jiao, K. Gururaj, P. Dey, A. Singh,
D. Hada, V. Jain, B. Paliwal, A. Mittal, S. Mehta, R. Ramjee, S. Agarwal, P. Kar, and M. Varma.
Ngame: Negative mining-aware mini-batching for extreme classification. In WSDM, March 2023.

B. Dean. We analyzed 306m keywords; here’s what we learned about Google searches. Online article,
2020. URL https://backlinko.com/google-keyword-study.

F. Faghri, D.-J. Fleet, J.-R. Kiros, and S. Fidler. VSE++: Improving Visual-Semantic Embeddings
with Hard Negatives. In BMVC, 2018.

A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the bandit setting:
Gradient descent without a gradient. In SIAM, 2005.

C. Guo, A. Mousavi, X. Wu, D.-N. Holtmann-Rice, S. Kale, S. Reddi, and S. Kumar. Breaking the
Glass Ceiling for Embedding-Based Classifiers for Large Output Spaces. In NeurIPS, 2019.

N. Gupta, D. Khatri, A. S Rawat, S. Bhojanapalli, P. Jain, and I. S Dhillon. Efficacy of dual-encoders
for extreme multi-label classification. In ICLR, 2023.

N. Gupta, F. Devvrit, A. S. Rawat, S. Bhojanapalli, P. Jain, and I. S. Dhillon. Dual-encoders for
extreme multi-label classification. In ICLR, 2024.

11

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://backlinko.com/google-keyword-study

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

V. Gupta, R. Wadbude, N. Natarajan, H. Karnick, P. Jain, and P. Rai. Distributional Semantics Meets
Multi-Label Learning. In AAAI, 2019.

W. L. Hamilton, R. Ying, and J. Leskovec. Inductive Representation Learning on Large Graphs,
2018.

K. He, Haoqi Fan, Yuxin W., S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In CVPR, 2020a.

X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang. Lightgcn: Simplifying and powering graph
convolution network for recommendation. In SIGIR, pp. 639–648, 2020b.

S. Hofstätter, S.-C. Lin, J.-H. Yang, J. Lin, and A. Hanbury. Efficiently Teaching an Effective Dense
Retriever with Balanced Topic Aware Sampling. In SIGIR, 2021.

W. Huang, T. Zhang, Y. Rong, and J. Huang. Adaptive Sampling Towards Fast Graph Representation
Learning, 2018.

H. Jain, Y. Prabhu, and M. Varma. Extreme Multi-label Loss Functions for Recommendation,
Tagging, Ranking and Other Missing Label Applications. In KDD, August 2016.

H. Jain, V. Balasubramanian, B. Chunduri, and M. Varma. Slice: Scalable Linear Extreme Classifiers
trained on 100 Million Labels for Related Searches. In WSDM, 2019.

K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E. Hullermeier.
Extreme F-measure Maximization using Sparse Probability Estimates. In ICML, 2016.

T. Jiang, D. Wang, L. Sun, H. Yang, Z. Zhao, and F. Zhuang. LightXML: Transformer with Dynamic
Negative Sampling for High-Performance Extreme Multi-label Text Classification. In AAAI, 2021.

V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t. Yih. Dense passage
retrieval for open-domain question answering. In EMNLP, 2020.

S. Khandagale, H. Xiao, and R. Babbar. Bonsai: diverse and shallow trees for extreme multi-label
classification. ML, 2020.

S. Kharbanda, A. Banerjee, E. Schultheis, and R. Babbar. Cascadexml: Rethinking transformers for
end-to-end multi-resolution training in extreme multi-label classification. In NeurIPS, 2022.

K. Lee, M.-W. Chang, and K. Toutanova. Latent retrieval for weakly supervised open domain question
answering. In ACL, 2019.

J. Liu, W. Chang, Y. Wu, and Y. Yang. Deep Learning for Extreme Multi-label Text Classification. In
SIGIR, 2017.

X. Liu, P. He, W. Chen, and J. Gao. Multi-Task Deep Neural Networks for Natural Language
Understanding. In ACL, 2019a.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019b.

W. Lu, J. Jiao, and R. Zhang. TwinBERT: Distilling Knowledge to Twin-Structured Compressed
BERT Models for Large-Scale Retrieval. In CIKM, 2020.

Y. Luan, J. Eisenstein, K. Toutanova, and M. Collins. Sparse, Dense, and Attentional Representations
for Text Retrieval. In TACL, 2020.

T. K. R. Medini, Q. Huang, Y. Wang, V. Mohan, and A. Shrivastava. Extreme Classification in
Log Memory using Count-Min Sketch: A Case Study of Amazon Search with 50M Products. In
NeurIPS, 2019.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed Representations of Words
and Phrases and Their Compositionality. In NIPS, 2013.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

P. Mineiro and N. Karampatziakis. Fast Label Embeddings via Randomized Linear Algebra. In
ECML/PKDD, 2015.

A. Mittal, K. Dahiya, S. Agrawal, D. Saini, S. Agarwal, P. Kar, and M. Varma. DECAF: Deep
Extreme Classification with Label Features. In WSDM, 2021a.

A. Mittal, N. Sachdeva, S. Agrawal, S. Agarwal, P. Kar, and M. Varma. ECLARE: Extreme
Classification with Label Graph Correlations. In WWW, 2021b.

A. Mittal, K. Dahiya, S. Malani, J. Ramaswamy, S. Kuruvilla, J. Ajmera, K. Chang, S. Agrawal,
P. Kar, and M. Varma. Multimodal extreme classification. In CVPR, June 2022.

S. Mohan, D. Saini, A. Mittal, S. R. Chowdhury, B. Paliwal, J. Jiao, M. Gupta, and M. Varma.
Enriching Document Representations using Auxiliary Knowledge for Extreme Classification. In
ICML, 2015.

J. Ni, J. Li, and J. McAuley. Justifying recommendations using distantly-labeled reviews and
fine-grained aspects. In EMNLP-IJCNLP, 2019.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in PyTorch. In NIPS-W, 2017.

Y. Prabhu, A. Kag, S. Gopinath, K. Dahiya, S. Harsola, R. Agrawal, and M. Varma. Extreme
multi-label learning with label features for warm-start tagging, ranking and recommendation. In
WSDM, 2018a.

Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned label trees for
extreme classification with application to dynamic search advertising. In WWW, 2018b.

Y. Qu, Y. Ding, J. Liu, K. Liu, R. Ren, W. X. Zhao, D. Dong, H. Wu, and H. Wang. Rocketqa: An
optimized training approach to dense passage retrieval for open-domain question answering, 2021.

A. S. Rawat, A. K. Menon, W. Jitkrittum, S. Jayasumana, F. X. Yu, S. Reddi, and S. Kumar.
Disentangling Sampling and Labeling Bias for Learning in Large-Output Spaces. In ICML, 2021.

S. J. Reddi, S. Kale, F.X. Yu, D. N. H. Rice, J. Chen, and S. Kumar. Stochastic Negative Mining for
Learning with Large Output Spaces. CoRR, 2018.

D. Saini, A.K. Jain, K. Dave, J. Jiao, A. Singh, R. Zhang, and M. Varma. GalaXC: Graph Neural
Networks with Labelwise Attention for Extreme Classification. In WWW, 2021.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter. ArXiv, 2019.

W. Siblini, P. Kuntz, and F. Meyer. CRAFTML, an Efficient Clustering-based Random Forest for
Extreme Multi-label Learning. In ICML, 2018.

Y. Tagami. AnnexML: Approximate Nearest Neighbor Search for Extreme Multi-label Classification.
In KDD, 2017.

T. Wei, W. W. Tu, and Y. F. Li. Learning for Tail Label Data: A Label-Specific Feature Approach. In
IJCAI, 2019.

M. Wydmuch, K. Jasinska, M. Kuznetsov, R. Busa-Fekete, and K. Dembczynski. A no-regret
generalization of hierarchical softmax to extreme multi-label classification. In NIPS, 2018.

L. Xiong, C. Xiong, Y. Li, K.-F. Tang, J. Liu, P. Bennett, J. Ahmed, and A. Overwijk. Approximate
nearest neighbor negative contrastive learning for dense text retrieval. In ICLR, 2021.

J. Yang, Z. Liu, S. Xiao, C. Li, D. Lian, S. Agrawal, A. Singh, G. Sun, and X. Xie. Graphformers:
Gnn-nested transformers for representation learning on textual graph. NeurIPS, 34:28798–28810,
2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Y. Yang, C. Huang, L. Xia, and C. Li. Knowledge graph contrastive learning for recommen-
dation. In SIGIR Conference, pp. 1434–1443, 2022. URL https://github.com/yuh-yang/
KGCL-SIGIR22.

H. Ye, Z. Chen, D.-H. Wang, and B. .D. Davison. Pretrained Generalized Autoregressive Model with
Adaptive Probabilistic Label Clusters for Extreme Multi-label Text Classification. In ICML, 2020.

E.H. I. Yen, X. Huang, W. Dai, P. Ravikumar, I. Dhillon, and E. Xing. PPDSparse: A Parallel
Primal-Dual Sparse Method for Extreme Classification. In KDD, 2017.

R. You, S. Dai, Z. Zhang, H. Mamitsuka, and S. Zhu. AttentionXML: Extreme Multi-Label Text
Classification with Multi-Label Attention Based Recurrent Neural Networks. In NeurIPS, 2019.

H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna. GraphSAINT: Graph Sampling Based
Inductive Learning Method. In ICLR, 2020.

J. Zhang, W.-c. Chang, H.-f. Yu, and I. Dhillon. Fast multi-resolution transformer fine-tuning for
extreme multi-label text classification. In NeurIPS, 2021.

W. Zhang, L. Wang, J. Yan, X. Wang, and H. Zha. Deep Extreme Multi-label Learning. ICMR, 2018.

J. Zhu, Y. Cui, Y. Liu, H. Sun, X. Li, M. Pelger, T. Yang, L. Zhang, R. Zhang, and H. Zhao.
Textgnn: Improving text encoder via graph neural network in sponsored search. In theWebConf,
pp. 2848–2857, 2021.

D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu. Layer-Dependent Importance Sampling for
Training Deep and Large Graph Convolutional Networks, 2019.

14

https://github.com/yuh-yang/KGCL-SIGIR22
https://github.com/yuh-yang/KGCL-SIGIR22

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Graph Regularized Encoder Training for
Extreme Classification

(Appendix)

A ADDITIONAL RESULTS

Table 14: Results on full-text benchmark datasets. RAMEN is up to 15% more accurate as compared
to both text-based and graph-based baselines.

PSP@1 PSP@5 PSN@5 P@1 P@5 N@5
LF-WikiSeeAlso-320K

RAMEN (ANCE) 37.9 45.6 45.5 50.5 25.2 52.4
RAMEN (NGAME) 36.9 45.5 45.2 50.4 25.3 52.4
OAK 33.9 40.4 40.3 48.6 23.3 49.2
GraphSage 20.6 23.1 26.6 24.1 9.1 25.3
GraphFormer 16.9 20.9 20.4 18.1 8.8 20.8

NGAME 33.8 41.0 41.0 47.7 23.7 48.99
DEXA 31.8 38.9 - 47.1 22.7 47.6
ANCE 29.6 32.8 34.2 45.7 17.32 45.4
CascadeXML 22.3 31.1 28.9 40.4 20.2 40.6
XR-Transformer 25.2 33.8 32.6 42.6 21.3 43.4
PINA - - - 44.5 22.9 -
AttentionXML 22.7 29.8 28.4 40.5 19.9 40.3
LightXML 17.9 24.2 22.8 34.5 16.8 34.2
SiameseXML 29.0 36.0 35.2 42.2 21.39 43.4
ECLARE 26.1 33.1 32.3 40.6 20.2 41.2
DECAF 25.7 34.9 33.7 41.4 21.4 43.3
Parabel 17.1 23.5 21.9 33.5 16.6 33.3
Bonsai 18.2 25.7 23.8 34.9 17.7 35.3

LF-Wikipedia-500K

RAMEN (ANCE) 50.9 61.9 61.8 81.1 50.1 75.3
RAMEN (NGAME) 43.6 61.8 60.2 85.9 52.6 79.2
OAK 45.3 60.8 59.9 85.2 50.8 77.3
GraphSage 35.2 37.8 40.8 43.1 28.3 35.3
GraphFormer 25.2 21.8 24.8 31.1 14 24.87

LEVER 42.5 60.2 - 85.1 52.1 -
DEXML - 58.9 - 85.8 50.5 77.1
NGAME 41.3 57.1 56.1 84.1 49.9 75.9
DEXA 42.6 58.3 57.4 84.9 50.5 76.8
ANCE 50.9 57.3 - 77.9 40.9 -
ELIAS 35.1 51.1 - 81.3 48.8 73.1
CascadeXML 31.9 44.9 43.9 80.7 46.3 70.5
XR-Transformer 33.6 47.8 46.6 81.6 47.9 72.4
PINA - - - 82.8 50.1 -
AttentionXML 34 50.2 47.7 82.7 50.4 74.7
LightXML 31.9 46.5 45.2 81.6 47.6 72.2
SiameseXML 33.9 37.1 38.9 67.3 33.7 54.3
ECLARE 31.1 38.3 34.5 68.1 35.7 56.4
Parabel 26.9 35.3 34.6 68.7 38.6 58.6
Bonsai - - - 69.2 38.8 -

Results on benchmark datasets: Table 1 compares RAMEN with graph and XC methods. RAMEN
is 5% more accurate over the best baseline numbers. In particular RAMEN is 2-3% more accurate than
traditional graph-based methods. Additionally, RAMEN is 3-4% more accurate over OAK (Mohan

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

et al., 2015) & PINA (Chien et al., 2023), which uses both XC and graph metadata. Table 11 compares
RAMEN against than best production method (Method-1) on the G-EPM-1M dataset. RAMEN was
found to be 3% better on the P@5. RAMEN was further found to be 15% better than Method-1 on
the propensity scored PSP@5, indicating that RAMEN could match tail keywords more accurately.
The quality of the two models was further measured using an in-production, large cross-encoder
oracle quality model that was trained on an extensive set of manually labeled data. The oracle quality
model found predictions made by RAMEN to be 43% more accurate than those made by Method-1.
Note that, RAMEN’s primary focus is short-text documents but for results on full text counterparts of
the dataset refer to Table 14 in the appendix.

Analysis of gains: Note that, Theorem 1 states that RAMEN and GCNs are equivalent. However, as
discussed in limitation of GCN in the introduction, GCN’s two stage retrieval pipeline can be noisy.
Table 2 demonstrates that if we replace the first stage with the oracle linker (first statge with zero
error), the performance of these graph-based methods starts to outperform RAMEN. However, this
oracle linker is never available for a novel test point, and RAMEN achieved a similar performance in
a fraction of the cost of training and prediction time as shown in Table 3. Additionally RAMEN can
predict meta-data graph links with high accuracy (Table 6) which validates the proposed Theorem 1.

Ablations on the Design: Experiments were conducted to understand the impact of the design
choices made by RAMEN as well as the impact of metadata on the performance of RAMEN. Table 5
complies these experiments. In particular, experiment “No-Bandits” explored the effects of different
choices of giving weights to different sources of metadata on RAMEN’s performance. A key finding
was that when uniform weights were assigned to all graphs, there was a substantial 18% drop in P@1.
In addition to that, similary accuracy of RAMEN for different initialization of graph weights proved
robustness of bandit learning. This highlights the importance of bandit learning, where each graph’s
contribution is determined dynamically. RAMEN’s robust training strategy extends benefits beyond
its own performance. SiameseXML and ECLARE, baseline methods, experienced improvements of
3% and 5% in P@1, respectively, when leveraging RAMEN’s metadata regularizer (Table 9).

Ablations on the Graph: To understand the impact of noisy edges in metadata, experiment "No
Pruning" disabled the trimming of noisy edges using cosine similarity filtering. A 4% loss in P@1
was observed which underscores the necessity of pruning unhelpful edges during training. RAMEN
uses multiple meta-data graphs for both document and label. To ascertain the contributions of the
anchor-doc and anchor-label metadata graphs, the ablations "No Doc. Graph" and "No Lbl. Graph"
were conducted. These experiments reveal that information from these graphs plays a significant role,
as disabling either leads to a 1.5–2% reduction in P@1. The information from these graphs can be
incorporated in baseline methods like ANCE. To understand its impact, experiment “AugGT’ trains
ANCE with augmented ground truth. The ground truth was expanded by using label propagation
wherein a label and a training point are linked by an edge if the label shares a neighbor in the metadata
graph of the said training point. RAMEN outperformed the “AugGT” setup by 15%. This suggests
that while leveraging graph information for ground truth enhancement is convenient, it may not be as
effective due to noisy edges. RAMEN uses multiple sources of graph metadata, table 10 in appendix
shows the alg benefits when all graph metadata is used but remains state of the art even if it uses only
hyperlink metadata, similar to OAK.

These experiments collectively shed light on the intricate interplay between design choices and
metadata utilization, underscoring the effectiveness and nuances of RAMEN’s approach.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS

Links obtained on the metadata graph from raw data suffer from missing links in much the same
way there are missing labels in the ground truth. To deal with this, RAMEN performs a random
walk with restart on each anchor node. The random walk was performed for 400 hops with a restart
probability of 0.8, thus ensuring that the walk did not wander too far from the starting node. This
random walk could also introduce noisy edges, leading to poor model performance. To deal with
such edges, in-batch pruning was performed and edges to only those anchors were retained which
had a cosine similarity of > 0 based on the embeddings given the encoder. To get the encoder,
RAMEN initialize the encoder with a pre-trained DistilBERT and fine-tuned it for 10 epochs(warmup
phase) using unpruned metadata graphs. Then the metadata graphs were pruned using the fine-tuned
encoder. Encoder fine-tuning was then was continued for 5 epochs using the pruned graphs after
which the graphs were re-pruned. These alternations of 5 epochs of encoder fine-tuning followed by
re-pruning were repeated till convergence. The learning rate for each bandit was set to 0.01. Table 16
in supplementary material summarizes all hyper-parameters for each dataset. It is notable that even
though RAMEN uses a graph at training time, inference does not require any such information,
making it highly suitable for long-tail queries.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C DATA STATS

Table 15: Dataset statistics summary for benchmark datasets used by RAMEN. Entries marked with
‡ were not disclosed because the dataset is proprietary.

Train Pts
N

Labels
L

Test Pts
N ′

Avg. docs.
per label

Avg. labels
per doc. Graph Types # Graph Nodes

G

Avg. node
neighbors
per doc.

Avg. node
neighbors
per label

LF-WikiSeeAlsoTitles-320K / LF-WikiSeeAlso-320K

693,082 312,330 177,515 4.67 2.11 Hyperlink
Category

2,458,399
656,086

38.87
4.74

7.71
4.82

LF-WikiTitles-500K / LF-Wikipedia-500K

1,813,391 501,070 783,743 17.15 4.74 Hyperlink
Category

2,148,579
766,929

16.46
2.35

8.53
4.21

LF-AmazonTitles-1.3M

2,248,619 1,305,265 970,237 38.24 22.20 related_items
category

916269
17981

1.98
3.35

3.95
583.04

G-EPM-1M

10,746,967 999,987 4,607,267 ‡ ‡ Co-session queries
Co-click queries ‡ ‡ ‡

Table 16: Hyper-parameter values for RAMEN on all datasets to enable reproducibility. RAMEN
code will be released publicly. Most hyperparameters were set to their default values across all
datasets. LR is learning rate. Multiple clusters were chosen to form a batch hence B > C. Clusters
were refreshed after 5 epochs. Cluster size C was doubled after every 25 epochs. Margin γ = 0.3
was used for contrastive loss. For training M2 number of positive samples and negative samples were
kept at 2 and 12 respectively. A cell containing the symbol ↑ indicates that that cell contains the same
hyperparameter value present in the cell directly above it.

Dataset Batch
Size S

Encoder
epochs

Encoder LR
LR1

BERT seq.
len Lmax

LF-WikiSeeAlsoTitles-330K 1024 300 0.0002 32
LF-WikiTitles-500K ↑ ↑ ↑ ↑
LF-AmazonTitles-1.3M ↑ ↑ ↑ ↑
LF-WikiSeeAlso-320K ↑ ↑ ↑ 128
LF-Wikipedia-500K ↑ ↑ ↑ ↑

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D EVALUATION METRICS

Performance has been evaluated using propensity scored precision@k and nDCG@k, which are
unbiased and more suitable metric in the extreme multi-labels setting (Jain et al., 2016; Babbar &
Schölkopf, 2019; Prabhu et al., 2018a;b). The propensity model and values available on The Extreme
Classification Repository (Bhatia et al., 2016) were used. Performance has also been evaluated using
vanilla precision@k and nDCG@k (with k = 1, 3 and 5) for extreme classification.

Let ŷ ∈ RL denote the predicted score vector and y ∈ {0, 1}L denote the ground truth vector (with
{0, 1} entries this time instead of ±1 entries, for sake of convenience). The notation rankk(ŷ) ⊂ [L]
denotes the set of k labels with highest scores in the prediction score vector ŷ and ∥y∥1 denotes the
number of relevant labels in the ground truth vector. Then we have:

P@k =
1

k

∑
l∈rankk(ŷ)

yl

PSP@k =
1

k

∑
l∈rankk(ŷ)

yl
pl

DCG@k =
1

k

∑
l∈rankk(ŷ)

yl
log(l + 1)

PSDCG@k =
1

k

∑
l∈rankk(ŷ)

yl
pl log(l + 1)

nDCG@k =
DCG@k∑min(k,||y||0)

l=1
1

log(l+1)

PSnDCG@k =
PSDCG@k∑k

l=1
1

log l+1

FN@k = 1−
∑

l∈rankk(ŷ)
yl

∥y∥1
Here, pl is propensity score of the label l calculated as described in Jain et al. (2016).

D.1 LABEL QUANTILE CREATION

For Figure 4 and Table 8, labels were divided into 5 equi-voluminous quantiles. To each label l ∈ [L],
a popularity score Vl = |i : yil = +2| was assigned by counting number of training datapoints tagged
with that label. The total volume of all labels was computed as Vtot

def
=

∑
l∈[L] Vl. Labels were

arranged in decreasing order of their popularity score Vl. 5 label quantiles were then created so that
the volume of labels in each bin is roughly ≈ Vtot/5. Thus, labels were collected in the first bin in
decreasing order of popularity till the total volume of labels in that bin exceeded Vtot/5 at which point
the first bin was complete and the second bin was created by selecting remaining labels in decreasing
order or popularity till the total volume of labels in the second bin exceeded Vtot/5 and so on. For
example, for the LF-WikiTitles-500K dataset, the five bins were found to contain approximately
1K, 9K, 30K, 84K, 375K labels respectively. Note that the first bin contains very few ≈ 1K labels
since these are head labels and a small number of them quickly racked up a total volume of ≈ Vtot/5
whereas the last quantile contains more than 100× more labels at around 375K labels since these are
tail labels and so a lot more of them are needed to add up to a total volume of ≈ Vtot/5.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E THEORETICAL ANALYSIS

We first recall the notation, then specify Theorem 1 formally, prove the result, and finally extend the
result to show that even multiple GCN layers can be approximated using non-GCN networks.

Let X ∈ RN×D = [x1, . . . ,xN]⊤ be the initial embeddings of the N data points over which a
graph with adjacency matrix A ∈ [0, 1]N×N is present. A typical convolution layer in a GCN can be
represented as ϕ(AXW) ∈ RN×D where W ∈ RD×D is a transformation matrix and ϕ : R → R is
some activation function applied coordinate-wise.

(?)

Theorem 2. lem:approx[Formal Restatement] Suppose the activation function used in the GCN
layer ϕ is β-Lipschitz, i.e., |ϕ(u)− ϕ(v)| ≤ β · |u− v| for all u, v ∈ R. Also suppose there exists a
non-GCN (e.g. feedforward, transformer etc.) network F : X → SP−1 where SP−1 is the the unit
sphere in say, P dimensions, that effectively predicts edges in the metadata graph. Specifically, let
Â = [âij] ∈ [0, 1]N×N with âij

def
= (1 + F(xi)

⊤F(xj))/2 be the approximated adjacency matrix.
Then for any transformation matrix W utilized by the GCN, there exists exists a non-GCN network
H : X → RD that well-approximates the embeddings of the GCN layer as well. Specifically, if we
abuse notation to let H(X)

def
= [H(x1), . . . ,H(xN)]⊤ ∈ RN×D, then we have

1√
N

∥ϕ(AXW)−H(X)∥F ≤ βR · ∥W∥2 ·
∥∥∥Â−A

∥∥∥
F
,

where R = maxi∈[N] ∥xi∥2 and ∥W∥2 denotes the spectral norm of the matrix W .

Theorem 1 effectively assures us that as Â → A, we have H(X) → ϕ(AXW) as well, i.e., the
augmented embeddings obtained using the GCN layer can be well-approximated by those offered by
the non-GCN network H if there exists a way to predict the adjacency matrix accurately.

E.1 PROOF FOR A SINGLE-LAYER GCN

Proof of Theorem 1. Consider the network
H : x 7→ ϕ(TF(x) + c) ∈ RD,

where T ∈ RD×P , c ∈ RD defined as

T
def
=

1

2
·W⊤

 ∑
j∈[N]

xjF(xj)
⊤

 ∈ RD×P

c
def
=

1

2
·W⊤

 ∑
j∈[N]

xj

 ∈ RD

Note that H is a non-GCN network since it merely places a fully connected layer T and a bias term c
on top of a non-GCN network F . Recall that F : X → SP−1 and W ∈ RD×D so the dimensionality
of T, c do make sense. Note that the values of the fully connected layer T and the bias term c depend
on the transformation matrix W used by the GCN which implies that for every choice of W made by
the GCN layer, there exists a choice of T, c for the non-GCN network as well.

To prove the result, note that the ith row of ϕ(AXW) can be written as

ϕ

W⊤

 ∑
j∈[N]

aijxj

whereas the ith row of H(X) can be written as

ϕ (TF(xi) + c) = ϕ

1

2
·W⊤

 ∑
j∈[N]

xjF(xj)
⊤

F(xi) +
1

2
·W⊤

 ∑
j∈[N]

xj

= ϕ

W⊤

 ∑
j∈[N]

1 + F(xj)
⊤F(xi)

2

xj

 = ϕ

W⊤

 ∑
j∈[N]

âijxj

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

This gives us

∥ϕ(AXW)−H(X)∥2F =
∑
i∈[N]

∥∥∥∥∥∥ϕ
W⊤

 ∑
j∈[N]

aijxj

− ϕ

W⊤

 ∑
j∈[N]

âijxj

∥∥∥∥∥∥
2

2

≤ β2 ·
∑
i∈[N]

∥∥∥∥∥∥W⊤

 ∑
j∈[N]

aijxj

−W⊤

 ∑
j∈[N]

âijxj

∥∥∥∥∥∥
2

2

= β2 ·
∥∥∥(A− Â)XW

∥∥∥2
F
≤ β2 · ∥XW∥22 ·

∥∥∥A− Â
∥∥∥2
F

where the second step follows since ϕ is applied coordinate-wise and is an L-Lipschitz function and
the last step follows from standard linear algebraic inequalities. We finish the proof by noticing that
the spectral norm is submultiplicative and ∥X∥2 ≤ R

√
N .

E.2 EXTENSION TO GCNS WITH MULTIPLE LAYERS

We note that this result can be extended to multiple layers. For example, suppose we wish to utilize
two graph convolution layers i.e.

ϕ(Aϕ(AXW)W̃),

where W̃ ∈ RD×D is the transformation matrix for the second GCN layer. The proof technique
presented above can be extended to show that the following non-GCN network would approximate
the above two-layer GCN.

K : x 7→ ϕ(T̃F(x) + c̃) ∈ RD

where

T̃
def
=

1

2
· W̃⊤

 ∑
j∈[N]

H(xj)F(xj)
⊤

 ∈ RD×P

c̃
def
=

1

2
· W̃⊤

 ∑
j∈[N]

H(xj)

 ∈ RD

where H is the non-GCN network explicated in the proof of Theorem 1. This technique can be
extended to cases with more than 2 GCN layers as well.

F ETHICAL CONSIDERATIONS

Our usage of data and terms of providing service to people around the world has been approved
by our legal and ethical boards. In terms of social relevance, our research is helping millions of
people find the goods and services that they are looking for online with increased efficiency and a
significantly improved user experience. This facilitates purchase and delivery without any physical
contact which is important given today’s social constraints. Furthermore, our research is increasing
the revenue of many small and medium businesses including mom and pop stores while also helping
them grow their market and reduce the cost of reaching new customers.

21

	Introduction
	Our Contributions

	Related work
	RAMEN: gRaph regulArized encoder training for extreME classificatioN
	Experiments
	Conclusion
	Additional Results
	Implementation details
	Data stats
	Evaluation metrics
	Label Quantile Creation

	Theoretical Analysis
	Proof for a Single-layer GCN
	Extension to GCNs with Multiple Layers

	Ethical Considerations

