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Abstract

We consider the problem of discriminator optimization in least-squares generative
adversarial networks (LSGANs) subject to higher-order gradient regularization
enforced on the convex hull of all possible interpolation points between the target
(real) and generated (fake) data. We analyze the proposed LSGAN cost within a
variational framework and show that the optimal discriminator, given a generator,
solves a regularized least-squares problem, and can be represented through a poly-
harmonic radial basis function (RBF) interpolator. The optimal RBF discriminator
can be implemented in closed-form, with the weights computed by solving a linear
system of equations. We validate the proposed approach on synthetic Gaussian
and standard image datasets. While the optimal LSGAN discriminator leads to
a superior convergence on Gaussian data, the inherent low-dimensional manifold
structure of images makes the optimal discriminator implementation ill-posed.
Nevertheless, replacing the trainable discriminator network with a closed-form
RBF interpolator results in superior convergence on 2-D Gaussian data, while
overcoming pitfalls in GAN training, namely mode dropping and mode collapse.

1 Introduction

Generative adversarial networks (Goodfellow et al., 2014) are a two-player game involving a generator
network G and a discriminator network D. The generator learns to transform samples from a noise
distribution, typically Gaussian, into images that follow a distribution pg. On the other hand, the
discriminator accepts an input, either a fake sample from pg , or a real sample (image from a dataset)
with underlying distribution pd, and learns to differentiate between the two.

The GAN Discriminator: Broadly speaking, the discriminator has two interpretations. In the
standard GAN (SGAN) (Goodfellow et al., 2014), least-squares GAN (LSGAN) (Mao et al., 2017)
or f -GANs (Nowozin et al., 2016), the discriminator has been shown to mimic a chosen divergence
metric between pd and pg (e.g., the Jensen-Shannon or the Pearson-χ2 divergence). Divergence-
based approaches fail if the data and generator distributions are non-overlapping (Arjovsky et al.,
2017). As an alternative, integral probability metrics (IPMs) were proposed, where the discriminator
(often called the critic) approximates a distance measure between the distributions, which induces a
constraint on the class of critics. For example, the Wasserstein GAN (WGAN) (Arjovsky et al., 2017),
which minimizes the earth mover’s distance, requires a Lipschitz-1 critic. Gulrajani et al. (2017);
Bellemare et al. (2017); Mescheder et al. (2018); Mroueh et al. (2018) and Adler & Lunz (2018)
consider regularizers on the energy of the gradients of the discriminator. Along another vertical,
kernel-based discriminators with Gaussian and inverse multi-quadric kernel have been considered
by Li et al. (2015, 2017a). While WGAN variants are a stable choice (Kang et al., 2022), recent
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works by Jolicoeur-Martineau et al. (2021) have been successful in employing the LSGAN loss in
adversarial score-matching applications.

LSGANs and Gradient Penalties: Interpolation based regularizers have been introduced in WGAN
with the gradient penalty. Roth et al. (2017); Kodali et al. (2017); Mescheder et al. (2018) observed
that minimizing the norm of the discriminator’s gradient (on interpolated points) on divergence-
minimizing GANs such as LSGAN results in superior performance. However, neither does the link
to Lipschitz-1 discriminators hold, nor does the GAN approximate the Pearson χ2 divergence. What
does optimizing the LSGAN with gradient penalty actually lead to? This gap in understanding
is what we seek to address in this paper.

1.1 The Proposed Approach

In this paper, we establish an explicit link between discriminator learning and high-dimensional
interpolation. Intuitively, given a batch of samples in Rn, the LSGAN discriminator can be seen as
assigning specific class-labels to the real samples and the fake ones. Given an unseen sample x, the
ideal discriminator output D(x) depends on the values assigned to all points in the vicinity of x,
which is precisely the task of kernel-based interpolation. Optimization of functions with higher-order
derivatives having bounded L2 norm to interpolate a given set of points has a unique solution (Duchon,
1977; Meinguet, 1979). This has led to successful application of higher-order gradient regularization
in image processing tasks – image interpolation (Tirosh et al., 2006) and super-resolution (Ren
et al., 2013), to name a few. We therefore consider the gradient-regularized LSGAN cost analyzed
from a functional optimization standpoint. Our analysis shows that the optimal discriminator (given
the generator) in the proposed setting involves polyharmonic radial basis functions (RBFs) for
interpolation. We implement the optimum through the RBF network with predetermined weights
and centers. Essentially, we show that enforcing interpolation-based gradient regularizers on the
LSGAN loss on the space of images, results in a discriminator that performs interpolation on the
space of class-labels. The proposed approach, referred to as Poly-LSGAN, outperforms baseline
LSGANs in terms of training stability and convergence on Gaussian learning tasks. The source code
for implementing Poly-LSGANs is available at https://github.com/DarthSid95/PolyLSGANs.
However, in practice, computing the weights of the interpolator is impractical due to singularity
issues arising from the Manifold Hypothesis, i.e., images lie in low-dimensional embeddings in
high-dimensional spaces (Kelley, 2017). Nevertheless, the superior performance on synthetic data
makes Poly-LSGAN a promising direction for further research.

2 LSGANs and Gradient Penalties

Mao et al. (2017) considered the GAN learning problem where the discriminator and generator
networks minimize the least-squares loss. To mimic the classifier nature of the standard GAN (Good-
fellow et al., 2014), an a−b coding scheme is used, where a and b are the class labels of the generated
samples and target data samples, respectively. On the other hand, the generator is trained to produce
samples that are assigned a class label c by the discriminator. The resulting formulation is as follows:

LLS
D =

1

2
Ex∼pd [(D(x)− b)2] +

1

2
Ex∼pg [(D(x)− a)2] ; D∗(x) = arg min

D
LLS
D ,

and LLS
G =

1

2
Ex∼pg [(D∗(x)− c)2] ; p∗g(x) = arg min

pg
LLS
G .

While Mao et al. (2017) showed that setting b−a = 2 and c−a = 1 lead to the generator minimizing
the Pearson-χ2 divergence, a more intuitive approach is to set c = b, which enforces the generator
to output samples that are classified as real by the discriminator. Rosca et al. (2020) showed that
the gradient penalties in GANs have the general form Ex∼pr

[
(‖∇D (x) ‖2 −K)

2
]
, where pr is the

reference density and K is a suitable constant. Works such as Gulrajani et al. (2017); Petzka et al.
(2018); Terjék (2020) consider K > 0 to enforce Lipschitz smoothness and use pr = pint, pint being
the interpolated distribution αpd + (1− α)pg; α ∈ [0, 1]. On the other hand, Kodali et al. (2017);
Mescheder et al. (2018); Mroueh et al. (2018) consider pr as limiting cases of either pd or pg, with
K = 0 to promote the smoothness of the learnt discriminator. Adler & Lunz (2018) implemented
mth-order generalizations of the cost empirically through a Fourier representation of the cost.
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2.1 Regularized LSGAN and Least-squares Interpolation

The ideal discriminator, upon convergence, will take a constant value for all values of x over X , the
convex hull of the supports of pd and pg . We set pr to be the uniform density over X , which implies
weighting all samples drawn from both pd and pg, and their possible linear combinations equally.
In order to accelerate the convergence of the discriminator during training, we propose to employ
higher-order gradient regularization with K = 0:

LD = LLS
D + λD

∫
X
‖∇mD(x)‖22 dx, (1)

where λd ≥ 0 is the Lagrange multiplier associated with the gradient penalty, and∇mD is the vector
of mth-order partial derivatives of D(x) (cf. Appendix A).

Consider an N -sample approximation of LLS
D in Equation (1), where NB samples are drawn from pd

and pg each (therefore, N = 2NB), represented by the dataset batch

D =
{

(ci, yi)
}N
i=1

=
{

(xi, b) | xi ∼ pd
}Nb

i=1

⋃{
(xj , a) | xj ∼ pg

}Nb

j=1
.

The corresponding discriminator optimization problem can be formulated as follows:

D∗ = arg min
D

N∑
i=1

(ci,yi)∼D

(D(ci)− yi)2 + λD

∫
X
‖∇mD(x)‖22 dx. (2)

The above represents a regularized least-squares interpolation problem. When λD = 0, the optimum
D∗ is an interpolator that passes through the target points (xi, yi) exactly. On the other hand, for
positive values of λD, the minimization leads to smoother solutions, penalizing sharp transitions
in the discriminator. We found out experimentally that λD = 10 results in superior performance.
A smoother discriminator allows for more efficient training of the generator (Li et al., 2017b; Xu
et al., 2018). The following theorem shows that the optimal discriminator, given the generator, that
solves the above least-squares minimization problem is an interpolator between the real and fake
class-labels.
Theorem 2.1. The optimal LSGAN discriminator that minimizes the cost given in Eq. (2) is

D∗(x) =

N∑
1=i

(ci,yi)∼D

wiψk (‖x− ci‖) + Pm−1(x;v), (3)

where ψk (r) =

{
rk for k = 1, 3, 5, . . .

rk ln(r) for k = 2, 4, 6, . . .
(4)

is the polyharmonic radial basis function, Pm−1(x;v) is an (m−1)th order polynomial parametrized
by the coefficients v ∈ RL, x ∈ Rn, D = {(ci, yi)} is the set of real and fake centers about which
the polyharmonic RBFs ψk (‖ · ‖) are localized, ‖ · ‖ denotes the `2 norm, and k denotes the order of
the polyharmonic interpolator, which implicitly assumes a gradient penalty of order m = d k+n2 e.
The N weights w = [w1, w2, . . . , wN ]T and L polynomial coefficients v = [v1, v2, . . . , vL]T can be
obtained by solving the linear system of equations:[

A + (−1)mλDCkI B
BT 0

] [
w
v

]
=

[
y
0

]
, (5)

where [A]i,j = ψk(‖ci − cj‖), B =

 1 1 · · · 1
c1 c2 · · · cN
...

...
. . .

...
cm−1
1 cm−1

2 · · · cm−1
N


T

, and y = [y1, y2, · · · , yN ]T,

I is the N ×N identity matrix, and cji is a vector of all jth order monomials of ci. The matrix B is
required to be full-rank for invertibility, and Ck is a constant that depends only on the order k .

The proof follows by applying the Euler-Lagrange equation from the Calculus of Variations to the
cost in Eq. (2). The details are provided in Appendix B. For k ≤ 0, the solution is non-interpolating,
due to the singularity at the centers ci. Owing to the polyharmonic radial basis kernel, the proposed
approach is referred to as Poly-LSGAN.
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Figure 1: The Wasserstein-2 distance versus iterations on learning (a) a 2-D Gaussian; and (b) a
2-D Gaussian mixture, for various LSGAN variants. The performance of the Poly-LSGAN with the
RBF discriminator is superior to the baselines in both scenarios. The convergence is also relatively
smoother and stabler, unlike the baselines, which have fluctuations on the 2-D Gaussian learning task.

3 Experimental Evaluation

We now evaluate the optimal Poly-LSGAN discriminator on learning synthetic 2-D Gaussian and
Gaussian mixture models (GMMs), and subsequently discuss extensions to learning images. We
consider polyharmonic spline order k = 1, 2. For larger k , we encountered numerical instability.

3.1 Validation on Synthetic Data

We compare Poly-LSGAN against the base LSGAN (Mao et al., 2017), and LSGAN subjected to the
gradient penalty (GP) (Gulrajani et al., 2017) , Rd and Rg (Mescheder et al., 2018), Lipschitz penalty
(LP) (Petzka et al., 2018) and the DRAGAN (Roth et al., 2017) regularizers. On the unimodal learning
task, the target is N (512, 1.5I2), where 12 is the 2-D vector of ones, and I2 is the 2 × 2 identity
matrix. On the GMM learning task, we consider eight components distributed uniformly about
the unit circle, each having a standard deviation of 0.02. To quantify the performance, we use the
Wasserstein-2 distance between the target and generator distributions

(
W2,2(pd, pg)

)
. The network

parameters are given in Appendix C. Figure 1 shows theW2,2 distance as a function of iterations
on the Gaussian and Gaussian mixture learning tasks. On both datasets, we observe that using
polyharmonic RBF discriminator results in superior generator performance (lowerW2,2 scores). In
all scenarios considered, the polyharmonic RBF discriminator learns the perfect classifier, compared
to LSGAN with a trainable network discriminator. Additional comparisons are given in Appendix D.

3.2 Experiments on Image Datasets

We train on MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017) and CelebA (Liu
et al., 2015) datasets. The results are presented in Appendix D. While the underlying structure is
learnt, the generated images are far from being realistic and below par compared with standard GAN
results. Poly-LSGAN failed to converge as the monomial matrix B (which can be viewed as a vector
generalization of the Vandermonde matrix) became singular. As noted in the literature on mesh-free
interpolation (Iske, 2004), B must be full-rank, for the system of equations in Eq. (5) to have a unique
solution. This requires the centers ci to not lie in a subspace/manifold of Rn. However, from the
manifold hypothesis (Kelley, 2017; Vershynin, 2018), we know that structured image datasets lie
precisely in such low-dimensional manifolds. To ascertain this behavior, we simulated a data manifold
with n=32× 32× 3=3072 dimensions, with the first M entries distributed as N (0.51M , 0.2I) and
the rest zeros, and observed that for M 6= n, the matrix B indeed became singular.

4 Conclusions

Considering a generalization of the gradient-regularized LSGAN cost, we showed that the optimal
discriminator for a given generator solves the regularized least-squares interpolation problem, whose
solution can be represented using the polyharmonic RBF. The proposed discriminator results in
superior performance on synthetic datasets such as 2-D Gaussians and Gaussian mixture densities.
However, the rank deficiency of the monomial matrix B caused convergence issues on image datasets.
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Although implementing the optimal discriminator yields superior performance in idealistic settings,
a straightforward extension to image generation in the ambient dimension became intractable due
to singularity issues. One approach to overcoming this issue is to resort to a latent space solution
as in the case of Wasserstein autoencoders (Tolstikhin et al., 2018), or to perform adversarial score
matching (Jolicoeur-Martineau et al., 2021). Alternatively, one could also analyze the effect of
enforcing the gradient-based regularizers on other GAN losses, such as the vanilla GAN or WGAN.
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A Mathematical Preliminaries

We recall the high-dimensional Euler-Lagrange conditions from the Calculus of Variations (Gelfand
& Fomin, 1964), which play an important role in the optimization of the Poly-LSGAN cost in
Equation 2.

Consider a vector x = [x1, x2, . . . , xn]T ∈ Rn and a function f : Rn → R. The notation
∇mf(x) denotes the vector of mth-order partial derivatives of f with respect to the entries of x.
∇0 is the identity operator. The elements of ∇mf are represented using the multi-index notation
α = [α1, α2, . . . , αn]T, as follows:

∂αf =
∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαn
n
f, where |α| =

n∑
i=1

αi,

and α ∈ Zn∗ , the set of n-dimensional vectors with non-negative integer entries. For example,
with n = 4,m = 3, the index α = [2, 0, 1, 0]T yields the element ∂3

∂x2
1∂x3

f(x). The square of the
L2-norm of∇mf is given by the multidimensional sum:

‖∇mf(x)‖22 =
∑

α: |α|=m

(
m!

α!

)
(∂αf(x))

2
, (6)

where α! = α1!α2! . . . αn!. The iterated Laplacian, also known as the polyharmonic operator,
is defined as: ∆mf(x) = ∆(∆m−1f(x)), where ∆f(x) = ∇.∇f(x) =

∑n
i=1

∂2

∂x2
i
f(x) is the

Laplacian operator acting on f(x). Applying the multi-index notation yields the standard form of the
polyharmonic operator:

∆mf(x) =
∑

α: |α|=m

(
m!

α!

)
∂α (∂αf(x)) .

Consider an integral cost L with the integrand F dependent on f and all its partial derivatives up to
and including order `, given by L (f(x), ∂αf ; |α| ≤ `) =

∫
X F (f(x), ∂αf ; |α| ≤ `) dx, defined

on a suitable domain X over which f and its partial derivatives up to and including order ` are
continuously differentiable. The optimizer f∗ must satisfy the Euler-Lagrange condition:

∂F
∂f

+
∑̀
j=1

(−1)j
∑

α: |α|=j

∂α
(

∂F
∂(∂αf)

)∣∣∣∣∣∣
f=f∗

= 0. (7)

B The Optimal Poly-LSGAN Discriminator

The proof of Theorem 2.1 follows from the results in mesh-free interpolation literature (Aronszajn
et al., 1983; Iske, 2004; Fasshauer, 2007) that deal with the generic polyharmonic spline interpolation
problem. For completeness, we provide the proof here. While the assumption may appear to be
strong, we show that this is implicitly satisfied by the optimal solution. Recall the discriminator
optimization problem given in Eq. (2)

arg min
D


N∑
i=1

(ci,yi)∼D

(D(ci)− yi)2 + λD

∫
X
‖∇mD(x)‖22 dx

 . (8)

To compute the functional optimum in the Calculus of Variations setting, the above cost must be cast
into an integral form. Using the Dirac delta function, we write:

N∑
i=1

(ci,yi)∼D

(D(ci)− yi)2 =

∫
X

N∑
i=1

(ci,yi)∼D

(D(x)− yi)2 δ(x− ci) dx.
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Then, Eq. (8) can be rewritten as an integral-cost minimization:

arg min
D

{∫
X

N∑
i=1

(ci,yi)∼D

(D(x)− yi)2 δ(x− ci) + λD‖∇mD(x)‖22

︸ ︷︷ ︸
F(D,∂αD; |α|=m)

dx

}
.

Computing the derivatives of the integrand F with respect to D and ∂αD yields

∂F
∂D

= 2

N∑
i=1

(ci,yi)∼D

(D(x)− yi) δ(x− ci), and
∑

α:|α|=m

∂α
(

∂F
∂(∂αD)

)
= 2λD∆mD.

Substituting the above into the Euler-Lagrange equation (Eq. (7)) gives us the partial differential
equation that the optimal discriminator D∗(x) must satisfy:(

N∑
i=1

(D(x)− yi)δ(x− ci)
)

+ (−1)mλD∆mD(x)

∣∣∣∣
D=D∗(x)

= 0.

While the above condition is applicable for a strong solution, a weak solution to D(x) satisfies:∫
X

((
N∑
i=1

(D(x)− yi)δ(x− ci)
)

+ (−1)mλD∆mD(x)

)
η(x) dx

∣∣∣∣
D=D∗(x)

= 0, (9)

where η(x) is any test function drawn from the family of compactly-supported infinitely-differentiable
functions. Aronszajn et al. (1983), an authoritative resource on polyharmonic functions, has shown
that, functions of the form

f(x)=

N∑
i=1

(ci,yi)∼D

wiψk (‖x− ci‖) + Pm−1(x;v), where ψk (r)=

{
rk for k = 1, 3, . . .

rk ln(r) for k = 2, 4, . . .
(10)

satisfy the polyharmonic PDE:

∆mf(x) =

N∑
i=1

Ckwiδ(x− ci),

where Pm−1(x;v) is the (m− 1)th order polynomial parametrized by the coefficients v ∈ RL. For
example, with m = 2, we have P(x;v) = 〈ṽ,x〉; v ∈ Rn+1. For a polynomial Pm−1(x;v) it holds
trivially that ∆mPm−1 = 0 which yields the condition Substituting the above back into Eq. (9), we
get ∫

X

(
N∑
i=1

((D(x)− yi) + (−1)mλDCkwi) δ(x− ci)
)
η(x) dx

∣∣∣∣
D=D∗(x)

= 0,

⇒
N∑
i=1

((D(ci)− yi) + (−1)mλDCkwi) η(ci)

∣∣∣∣
D=D∗(x)

= 0.

Since the above condition must hold for all possible test functions η, we have

D∗(ci)− yi + (−1)mλDCkwi = 0 ∀ i = 1, 2, · · ·N,
whereD∗ is given by Eq. (10). Substituting forD∗ and stacking for all i gives the following condition
that the weights and polynomial coefficients satisfy:

(A + (−1)mλDCkI)w + Bv = y, (11)

where [A]i,j = ψk(‖ci − cj‖); w = [w1, w2, . . . ,wN ]T, y = [y1, y2, · · · , yN ]T,

B =


1 1 · · · 1
c1 c2 · · · cN
...

...
. . .

...
cm−11 cm−12 · · · cm−1N


T

, and v = [v0, v1, v2, . . . , vL]T.
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The matrix B corresponds to a Vandermonde matrix when n = 1. However, the system of linear
equations is underdetermined, with fewer equations than unknowns.

To derive the second condition present in Eq. (5), BTw = 0, we enforce the higher-order gradient
penalty on the optimal solution D∗. To define the higher-order gradient-norm, we first consider the
inner-product space associated with the higher-order gradient, where

〈f, g〉 ,
∫
Rn

(∇mf) · (∇mg) dx.

= (−1)m
∫
Rn

f · (∆mg) dx,

where in turn, the second inequality is via integration by parts. For any function D∗ of the form given
in Eq. (10), we have

〈D∗, D∗〉 = (−1)m
∫
Rn

D∗(x)

(
N∑
i=1

(−1)mCkwiδ(x− ci)
)

dx

= (−1)mCk

N∑
i=1

wiD
∗(ci).

Substituting for D∗ from Eq. (10) gives:

〈D∗, D∗〉 =

∫
Rn

‖∇mD∗‖22 dx = (−1)mCk

N∑
i=1

wi N∑
j=1

(cj ,yj)∼D

wjψk (‖cj − ci‖) + Bv


= (−1)mCkw

TAw, (12)

where the second equality holds as a result of Eq. (14). Substituting in D∗ and Eq. (12) into the
optimization problem in Eq. (8) yields:

arg min
D


N∑
i=1

(ci,yi)∼D

(D(ci)− yi)2 + λD

∫
X
‖∇mD(x)‖22 dx


= arg min

w,v

{
‖Aw + Bv − y‖22 + λDCkw

TAw︸ ︷︷ ︸
F(w,v)

}
. (13)

Minimizing the cost function in Eq. (13) with respect to w and v yields:

∂F

∂w
= 2AT (Aw + Bv − y + 2λDCkw) = 0, and

∂F

∂v
= 2BT (Aw + Bv − y) = 0

⇒BTw = 0, (14)

which gives us the second necessary condition that the optimal weights and polynomial coefficients
must satisfy. Equation (14) ensures that the solution obtained is such that the sum of the unbounded
polyharmonic kernels vanish as x tends to infinity. Essentially, in regions close to the centers ci,
there is a large contribution in D∗(x) from the kernel function, and when far away from the centers,
the polynomial has a large contribution in D∗(x) . This ensures that the discriminator obtained by
solving the system of equations does not grow to infinity. This completes the proof of Theorem 2.1.
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C Training Specifications

Experiments on 2-D Gaussian Data: On the unimodal Gaussian learning task, the generator is a
single layer affine transformation of the noise z, given by x = Mz+ b, while on the GMM task, it is
a three-layer neural network with Leaky ReLU activations. The discriminator in baseline LSGAN
variants is a three-layer neural network with Leaky ReLU activation in both the Gaussian and GMM
learning tasks. Poly-LSGAN employs the RBF discriminator while weights are computed by solving
the system of equation given in Eq. (5).

The networks are trained using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of
ηg = 0.002 for the generator and ηd = 0.0075 for the discriminator. A batch size of 500 is employed.
The models are evaluated using the Wasserstein-2 distance,W2,2(pd, pg), between the target and
generator distributions. The distanceW2,2(pd, pg) is computed in closed-form on Gaussian data,
given by

W2,2(pd, pg) = ‖µd − µg‖2 + Trace
(

Σd + Σg − 2
√

ΣdΣg

)
.

On the Gaussian mixture data, W2,2(pd, pg) is estimated empirically using the Python optimal
transport (Flamary et al., 2021) library.

Experiments on Image Data: On image learning tasks, we employ the DCGAN (Radford et al.,
2016) generator, trained using the Adam optimizer. The batch size is set to 100. The generator
learning rate is set to ηg = 10−4. The discriminator is the polyharmonic RBF with k = 1, which
corresponds to enforcing a gradient penalty of order m = dn+1

2 e. Consequently, the matrix B
contains monomials up to oder m− 1.

Codebase: The TensorFlow 2.0 (Abadi et al., 2016) based implementation for Poly-LSGAN is
available on GitHub at https://github.com/DarthSid95/PolyLSGANs.

D Additional Experimental Results

We now present additional experiments results from the authentic Gaussian and image datasets
experiments conducted on Poly-LSGAN.

Experiments on Gaussian Data: Figures 2 and 3 present the generated and target data samples,
superimposed on the level-sets of the discriminator, for the 2-D Gaussian, and 8-component Gaussian
mixture learning tasks, respectively. For the Gaussian learning problem, we observe that Poly-LSGAN
does not mode-collapse upon convergence to the target distribution. However, in the baseline GANs,
depending on the learning rate, the generator converges to a distribution of smaller support than the
target, before latching on to the desired target. Similarly, on the GMM learning task, Poly-LSGAN
learns the target distribution more accurately compared to the baselines.

Experiments on Image Data: Figure 4 depicts the images generated by Poly-LSGAN when trained
on the MNIST, Fashion-MNIST and CelebA datasets. In all scenarios, we observe that, although the
generator is able to produce images from the target dataset, the visual quality of the images is sub-par
compared to standard GAN approaches. Additional training of these models resulted in gradient
explosion caused by the singularity of the monomial matrix B.
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Figure 2: ( Color online) Convergence of generator distribution (green) to the target 2-D Gaussian
data (red) on the considered LSGAN variants. The heatmap represents the values taken by the
discriminator. The Poly-LSGAN approach leads to a better representation of the discriminator
function during the initial training iterations when compared to baseline approaches, leading to a
faster convergence. Poly-LSGAN also does not experience mode collapse.
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Figure 3: ( Color online) Convergence of generator distribution (green) to the target multimodal
Gaussian data (red) on the considered LSGAN variants, superimposed on the level-sets of the
discriminator. The ideal D(x) assigned a value of b = 1 to reals and a = −1 to fakes. Poly-LSGAN
is able to identify the modes of the GMM more accurately than the baselines.
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Figure 4: Images generated by training Poly-LSGAN on vectorized images drawn from (a) MNIST;
(b) Fashion-MNIST; and (c) CelebA datasets. While Poly-LSGAN learns meaningful representa-
tions (although visually sub-par compared to standard GANs) on MNIST and Fashion-MNIST, the
generator fails to converge in all scenarios. The poor performance of Poly-LSGAN is attributed to
training instability caused by the singularity of the monomial matrix B in solving for the optimal
discriminator weights.
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