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Abstract

Score-based models comprise a neural network trained to
approximate the Stein score, which is the gradient of the log-
arithm of the target distribution. Novel samples are obtained
by Langevin diffusion over the approximated score field. In
this extended abstract, we explore an efficient, low-resource,
plug-and-play framework to computing the score of the distri-
bution based on a Fourier-series approximation. We derive
closed-form approaches to estimating the score based on
the Fourier coefficients of the data distribution using novel
Fourier score networks (FSN) with predetermined weights.
The proposed FSN can be incorporated into various exist-
ing Langevin sampling schemes. We demonstrate sampling
with noise-conditioned score-based samplers, wherein the
proposed approaches result in a 20× faster network weight
computation, over the baselines on synthetic Gaussian data,
and a two-fold reduction in iterations when applied to the
latent-space representations of image datasets.

1. Introduction
Recent advancements in generative models, particularly dif-
fusion and score-based models [7, 23–25, 27], have enabled
the transformation of high-dimensional noise into realistic
images. These models function by gradually introducing
noise into data samples (x ∈ Rn) from a standard Gaus-
sian distribution (z ∼ pz = N (0, I)), and then reversing
this process to generate images. The forward process is
described as a stochastic differential equation (SDE) com-
bining data-dependent drift and noise-based diffusion. The
reverse process, where noise is transformed back into im-
ages, is approximated using neural networks, yielding a
generative model. This approaches discretize the reverse
SDE [10, 11, 20, 30, 31], implemented via Langevin Monte
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Carlo, and has achieved state-of-the-art performance in im-
age generation and reconstruction [4, 8, 12–14].

Score-based Generative Models: Central to score-based
models, as identified by Song et al. [24, 26, 27], is the Stein
score function (∇x ln (pd(x))), representing the gradient of
the logarithm of the target data distribution. These models
typically train a neural network (sθ(x)) to approximate this
score by minimizing a score-matching loss. This loss is
equivalent to minimizing the sum of the norm of the score
network output and the trace of its Jacobian. Simplifications
include Sliced score matching (SSM), which uses random
Gaussian projections, and Denoising score matching, focus-
ing on scores of noise-perturbed data densities.

Fourier Bases and Neural Networks: Fourier Bases and
Neural Networks: Multi-layer networks with sinusoidal ac-
tivations (SIREN) have shown performance improvements
when learning representations of images, sound, and wave-
fields [22]. Fourier Neural Operators (FNO), as proposed by
Li et al., [18] parameterize integral kernels in Fourier space
and have been applied to approximate various partial differ-
ential equations (PDEs), like the Burgers’, Navier-Stokes,
or Darcy flow equations, with applications in modeling tur-
bulent flows and zero-shot super-resolution [3, 17, 28, 32].
Asokan and Seelamantula [1] utilized a Fourier-series ap-
proximation in GANs to solve a Poisson PDE.

1.1. Our Contribution

In this extended abstract, we introduce a novel method for
estimating the Stein score through a Fourier-series approx-
imation, specifically in the context of Langevin diffusion.
Building upon the Fourier approximation method discussed
in [1], we develop the Fourier Score Network (FSN), which
is designed to replace traditional residual and convolutional
score networks [24, 25, 27], offering a more compute and
memory efficient alternative. Our approach, entitled Fourier-
series-based Langevin Diffusion (FoLD), leverages the FSN
to estimate both the true score of the target distribution and
its noise-conditioned variants. This facilitates a plug-and-
play integration with existing sampling algorithms [24, 25].

Experimental validation on synthetic Gaussian data



demonstrates that the FoLD approach achieves a two-fold
increase in sampling over baseline methods in modeling the
latent-space representations of images while eliminating the
need to train the score network. The computation of the FSN
parameters is about 20× faster than training NCSNs.

Our work is distinct from the closest related research by
Zheng et al. [32] and Lim et al. [19], wherein the authors
consider neural operators to transform Gaussian distribu-
tions into continuous-time solution trajectories of the reverse
diffusion process, relying on temporal convolution layers
parameterized in the Fourier space.

2. Score-based Langevin Diffusion
We first recall the score-based Langevin diffusion formula-
tion. Langevin Monte Carlo (LMC) has been the de facto
strategy for sampling from a given distribution, where we
have access to the true score function, ∇x ln (pd(x)). LMC
is an instance of Markov chain Monte Carlo (MCMC), and
is a discretization of the Langevin diffusion SDE given by
dx(t) = −∇xf(x(t)) dt+

√
2 dB(t), where B(t) denotes

Brownian motion. The associated discretized update is:

xt+1 = xt − γ∇xf(x)
∣∣
x=xt

+
√
2γ zt, (1)

where zt ∼ pz = N (0, In) is an instance of standard Gaus-
sian noise drawn at time instant t, and is independent of
the sample xt. The evolution is initialized with paramet-
ric noise, i.e., x0 ∼ pz . Different choices of the mapping
function f give rise to various choice of diffusion models.
In this paper, we consider score-based approaches, where
∇xf(x) = −∇x ln(pd(x)) [24]. In practice, γ is annealed
as the iterations progress, typically on a linear or a geometric
scale, giving rise to the annealed Langevin sampler:

xt+1 = xt + γt∇x ln (pd(x))
∣∣
x=xt

+
√
2γt zt, (2)

Existing score-based approaches train a neural network
sθ(x) to approximate the score, by means of a score-
matching loss, originally derived in the context of indepen-
dent component analysis [9]:

LSM(θ) = E
x∼pd

[
Tr (∇xsθ(x)) +

1

2
∥sθ(x)∥22

]
, (3)

where Tr(·) denotes the trace operator, and ∇xsθ(x) is the
Jacobian of the score network. The output of the trained net-
work is used to generate samples through annealed Langevin
dynamics. To circumvent computing the Jacobian, Song
et al. [26] proposed a sliced score-matching loss (LSSM),
wherein the trace of the Jacobian is replaced with a stochas-
tic estimate, computed over random Gaussian projections,
i.e., Tr (∇xsθ(x)) ≈ Ev∼pz

[
vT∇xsθ(x)v

]
. However, as

noted by Song et al. [24], a major limitation is that the pre-
dicted score is weak in regions far away from the target distri-
bution, which is typically the case at the start of the Markov

chain. To circumvent this issue, the noise-conditional
score network (NCSN) was proposed in [24], wherein
the denoising score-matching (DSM) loss, defined as
LDSM(θ;σ) = 1

2 Ex∼pd Ex̃∼N (0,σ2I)

[∥∥sθ(x̃, σ)+ x̃−x
σ2

∥∥2
2

]
is computed over a set of predetermined noise levels/scales
{σℓ}Lℓ=1, giving rise to the NCSN loss: LNCSN(θ) =
1
L

∑L
ℓ=1 λσℓ

LDSM(θ;σℓ), where λσℓ
is a function of σℓ.

Subsequent works, such as those by Jolicoeur-Martineau
et al., [10], and Karras et al., [11] considered improved
discretizations of the underlying differential equation to ac-
celerate the sampling process. Recently, denoising diffusion
GANs (DDGANs) [29] have been introduced, wherein a
GAN is trained to model the diffusion process, with the gen-
erator and discriminator networks conditioned on the time
index, while in [2, 6, 15], GAN discriminators have been
used for classifier-guided Langevin sampling.

3. Fourier-series-based Score Estimation
We first recall the Fourier-series representation proposed
for the GAN discriminator in WGAN-FS by Asokan and
Seelamantula [1]. Consider the data distribution pd(x), x ∈
Rn, with the Fourier approximation given by:

pd(x)≈
1

2
+
∑

m∈[M ]n

αr
mcos(ωo⟨m,x⟩)+αi

msin(ωo⟨m,x⟩), (4)

where ⟨·, ·⟩ denotes the inner product, m ∈ Zn is an n-
dimensional vector with integer entries, [M ]n denotes the
Cartesian product space {1, . . . ,M}n, and ωm = ωom =
ωo[m1,m2, . . . ,mn]

T denotes the harmonics, where in turn,
ωo = 2π

T is the fundamental frequency, T being the funda-
mental period. The Fourier coefficients αm are expressed
via approximations of the characteristic function as

αr
m = Re{αm}≈ 1

NT

N∑
k=1

xk∼pd

cos(ωo⟨m,xk⟩), and (5)

αi
m = Im{αm} ≈ 1

NT

N∑
k=1

xk∼pd

sin(ωo⟨m,xk⟩). (6)

In this work, we extend the above framework to score esti-
mation. We consider two approaches — one corresponding
to the standard score estimate; and the other corresponding
to the denoising NCSN approach. Starting from the Fourier
approximation of pd(x) in Equation (4), and leveraging the
property that ∇x ln (pd(x)) =

1
pd(x)

∇xpd(x), we obtain

∇x ln (pd(x))≈
(

ωo

pd(x)

) ∑
m∈[M ]n

αi
mcos(ωo⟨m,x⟩)m

−
(

ωo

pd(x)

) ∑
m∈[M ]n

αr
msin(ωo⟨m,x⟩)m,

(7)



where pd(x), αr
m, and αi

m are computed as per Equa-
tions (4)–(6). The score of the data distribution can be
computed in closed-form using a neural network model,
but with predetermined weights – we refer to the network as
the Fourier score network sFSN(x). Score-based Langevin
sampling can be carried out without the need for training
a score network sθ(x). The sFSN(x) parameters αm are
computed one-shot over training samples, obviating the need
for backpropagation-based optimization.

However, as with the baseline NCSN, the magnitude of
the score is small far away from the target pd, which signifi-
cantly slows down the sampling process (mixing time of the
Markov chain). To circumvent this issue, we also consider
noise-conditional counterparts of FoLD (NC-FoLD) in mod-
eling the smoothed score, ∇x ln

((
pd ∗ N (0, σ2

ℓ I)
)
(x)

)
.

An alternative to computing the score is to estimate the
Fourier representation of pd(x) or (pd ∗N (0, σ2

ℓ I))(x), and
subsequently compute the score via automatic differentiation
(autodiff). To facilitate a fair comparison between the
two approaches, we implemented the FSN as a custom-layer
neural network, with both pd and ∇x ln(pd) as the outputs.

The FoLD Algorithms: Algorithm 1 presents sampling
and coefficient estimation in FoLD and NC-FoLD. In FoLD,
the Fourier coefficients {αm} are pre-computed using Equa-
tions (5) and (6) over batches of data drawn from pd.
The sampling strategy remains unchanged from the base-
lines [24, 25]. In NC-FoLDv2, we incorporate noise condi-
tioning by scaling the output of sFSN by the noise variance.
In the NC-FoLD, the score is computed on noise-convolved
versions of pd. We recompute the Fourier coefficients at the
start of each noise level while sampling.

4. Experimental Validation
To validate the performance of the proposed Fourier score
network, we compare FoLD variants with NCSN [24],
and NCSNv2 [25], and SSM [26]. Consider the two-
component Gaussian target distribution from [24]: pd(x) =
1
5N (−5, I)+ 4

5N (5, I), where 5 is a 2-D vector with both en-
tries equal to 5. The baseline variants consider a three-layer
fully-connected network with 128 nodes and softplus
activation in the hidden layers. We train the score network
with SSM and NCSN losses over 104 iterations with the
Adam optimizer [16]. The learning rate is set to 0.001, and
the batch size is set to 128. For the Fourier score network,
based on the analysis presented in [1], and the ablation ex-
periments reported in Section 4.1 (cf. Figure 1), we consider
the period T = 20, with 50 harmonics, i.e., M = 50. The
FSN coefficients are computed over 2× 106 samples, com-
prising 1000 batches of 2000 samples each. The coefficient
estimation in FSN takes 1.32± 0.05 seconds, while training
the score network sθ in the baselines takes 20.266 ± 0.2
seconds, i.e., FSNs demonstrate nearly a 20× speedup! In
terms of parameter count, the score network in NCSN mod-

Algorithm 1: Sampling and coefficient estimation
for FoLD, NC-FoLD, and NC-FoLDv2 variants.

Inputs: Data x ∼ pd, noise levels {σℓ}Lℓ=1,
pσℓ

= N (0, σ2
ℓ I), # steps Tℓ, # iterations Tmax.

Fourier parameters: Score network sFSN, period T ,
truncation order M , batch size B, # batches NB .
Fourier Langevin Diffusion (FoLD) sampler:
if FoLD or NC-FoLDv2 then

Compute: Fourier coefficients αm of pd
Initialize: x0 ∼ N (0, I)
for ℓ = 1 to L do

if NC-FoLD then
Compute: Fourier coefficients of pd ∗ pσℓ

for t = 1 to Tℓ do
Draw: zt ∼ N (0, I)
Compute: Annealing parameter γt
Sample: xt+1=xt−γt sFSN(xt)+

√
2γtzt

Output: Samples output by FoLD: xt at t = Tmax

Fourier Score Network (FSN) coefficients:
while j = 1,2,. . . ,NB do

if FoLD or NC-FoLDv2 then
Sample: {xk; k = 1, 2, . . . , B, xk ∼ pd}

else if NC-FoLD then
Sample: {xk; k=1, . . . , B, xk ∼ pd ∗ pσℓ

}
Compute: Estimate αi

m,j ; αr
m,j (Eqs. (5)-(6))

Compute: αr
m= 1

NB

∑
j α

r
m,j ; α

i
m= 1

NB

∑
j α

i
m,j

Update: Fourier score network sFSN with αi
m, αr

m

els consist of nearly 17× 103 trainable parameters, whereas,
for FSNs, with M = 50, we have 15× 103 parameters, of
which 5 × 103 are preselected harmonics [M ]n, and 104

coefficients {αm}, computed via Equations (5) and (6).
On Gaussian learning tasks, we observe that FoLD is

able to model the score field accurately, with a significantly
lower network complexity and training time. For sampling
on the 2-D GMM, the baselines consider {σℓ}Lℓ=1 to be a
geometric progression, with L = 10, σ1 = 20 and σ10 = 1.
The sampler is run for TL = 100 steps for each noise level.
In FoLD variants, we consider identical noise levels, but run
the sampler for TL = 10 steps.

An in [1], FSNs suffer from the curse of dimensionality
when scaled to high dimensions. We therefore employ the
FoLD sampler on the latent-space of images learnt by an
autoencoder. We present results on MINST, SVHN and
CelebA datasets, with 15-, 32-, and 63-dimensional latent-
space representations, respectively. We observe a two-fold
improvement in convergence over the baseline NCSN, with
the FoLD sampler being run for TL = 50 steps, which is
attributed to the superior approximation of the score by the
FSN over the baselines.
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Figure 1. ( Color online) Comparison of the score field generated by the Fourier score network in FoLD for various choices of (a) the
fundamental period T , for truncation order M = 75; and (b) the truncation order M , for T = 20, when modeled on the two-component
GMM pd = 1

5
N (−5, I) + 4

5
N (5, I). We observe that, when T underestimates the spread of the data, as is the case for T = 2, there are

aliasing artifacts. For large values of T or small values of M (T > 100 or M < 10 in the example considered), the score field does not
accurately point towards pd. Here, setting T = 20 and M = 75 is a viable compromise between compute load and approximation quality.

(a) (b)

Figure 2. ( Color online) Comparison of the score fields gen-
erated by (a) the Fourier score network in FoLD; and (b) auto-
differentiation applied to the Fourier approximation of pd in FoLD.

4.1. Ablation Experiments

In our ablation studies, we compared the closed-form Fourier
Score Network (FSN) with the auto-differentiation method
applied to the Fourier-series approximation of pd. As per the
results in Figure 3, both methods show similar performance.
However, FSNs are more efficient, requiring approximately
0.0145± 0.002 seconds per forward pass during sampling,
compared to 0.075± 0.003 seconds for each iteration using
the auto-differentiation method. This indicates that FSNs
are approximately four times faster.

We also investigated how the truncation order M and the
assumed period T in the Fourier-series impact score approx-
imation. As shown in Figure 1, accurate estimations of T
improve performance, aligning with findings in [1]. How-
ever, underestimating T leads to aliasing and convergence
to aliased targets. Beyond M > 50, we noticed a significant
increase in computation time without substantial improve-
ments in approximation quality. Consequently, we limited
the Fourier series to M = 50 harmonics.
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Figure 3. ( Color online) Images generated by FoLD, when the
FSN coefficients are modelled on the latent-space of images.

5. Discussion and Conclusions

This extended abstract considers the challenge of score-
based Langevin diffusion, introducing an efficient approach
to computing the score via a Fourier-series approximation.
The Fourier score network eliminates the need for tradi-
tional training, relying instead on closed-form calculations
of Fourier coefficients, significantly reducing pre-processing
times in score-based sampling. As a proof-of-concept, we
validated our approach with experiments on 2-D synthetic
Gaussian data and conducted ablation studies on noise-
conditional score computation, fundamental period T , and
truncation length M . Our method demonstrated a two-
fold speedup in sampling and a 20× speedup by avoiding
gradient-descent-based training.

Key future research directions include investigating
higher-order discretization [10, 20, 30, 31], momentum-
based acceleration [5] in sampling algorithms, and adapting
the Fourier score networks to model latent-space distribu-
tions in high-resolution autoencoder-based models [21].
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